ANNEXES

ANNEXE I

PRESENTATION DU LABORATOIRE D'ACCUEIL

CARACTERISTIQUES

GENERALES

DU FOUR SOLAIRE

HELIOSTATS

- fonction : réflecteurs plans
- nombre : 63 sur 8 terrasses
- dimensions : $7,5m \times 6m = 45m^2$ soit $2835m^2$ au total
- facettes : 50cm x 50cm x 7,5mm glace doucie
- nombre:180 par héliostat soit 11340 au total
- réflecteur : argent en face arrière
- protection : cuivre et vernis

Le faisceau parallèle horizontal Nord-Sud réfléchi par le champ d'héliostats couvre entièrement le concentrateur

CONCENTRATEUR parabolique de révolution

- distance focale : 18m
- hauteur : 40m
- largeur : 54m
- surface apparente 1830m²
- facettes : 45cm x 45cm x 4,5mm verre trempé, incurvées par contrainte mécanique
- réflecteur : argent en face arrière
- protection : cuivre et vernis
- nombre : 9500 environ

BATIMENT FOUR

- hauteur du foyer par rapport au bas du concentrateur : 13m
- cabine focale : 4m x4m x 4m

CARACTERISTIQUES

ENERGETIQUES

- DU FOYER:
- Flux total : 1000 KW
- diamètre de réception : 800 mm
- concentration maximum : 12000 fois le soleil .
- concentration movenne : 2000 fois le soleil .

laboratoire d'énergétique solaire

four solaire de 1000 kw (thermiques)

SERVICE TRAITEMENT

DE MATERIAUX

Le Four Solaire de 1000KWt.Photo C.ROYERE .

PRINCIPE DES APPORTS

DE RAYONNEMENT DANS LE PLAN FOCAL

Chaque élément réflecteur du concentrateur éclaire sur le plan focal une zone en forme d'ellipse : Le Foyer n'est pas ponctuel .

La chaudière à sable en fonctionnement . Photo C.ROYERE.

PRINCIPE D'ASSERVISSEMENT EN BOUCLE FERMEE

PAR LUNETTE

rotation autour de l'axe vertical rotation autour de l'axe horizontal rotation autour des deux axes

Figure 1 : Vue générale arrière de quelques héliostats .

Figure 2 : Vue raporochée arrière d'un héliostat : détails des charoentes, vérins hydrauliques et axes .

Figure 5 : Vue arrière des facettes du concentrateur : détails de fixation

Figure 3 : Lumette de recherche et de guidage sur leurs chargentes support devant les héliostats .

Figure 4 : Vue rapprochée d'un ensemble lunettes recherche et guidage .

Le

Figure 7 : Mesure de répartition de puissance dans le plan focal : calorimètre intégral plan .

Figure 8 : Fusion-coulée et granulation en fonctionnement .

et de mise sous contrainte

Figure 6 : Vue générale arrière d'un étage du concentrateur .

four solaire de 1000 kw

donne :

- un flux élevé 1000KW
- des densités de flux très élevées : jusqu'à 12000 fois la densité du flux du rayonnement solaire

et permet d'obtenir :

- des températures élevées sur matériaux conducteurs ou non de l'électricité et en présence d'air ou sous atmosphère contrôlée en utilisant une enceinte à hublot
- des traitements de matériaux à températures élevées sans contamination par la source d'énergie.
- des mesures physiques en l'absence de champs électriques ou magnétiques intenses
- des apports d'énergie sur la cible modulables à grandes vitesses

Applications du four solaire de 1000 kw

• METALLURGIE SOUS

ATMOSPHERE CONTROLEE

(inerte ou vide)

- -fusion, coulée de métaux et de métalloïdes
- -synthèse d'alliages métalliques spéciaux
- -traitements de minerais: grillage volatilisation
- <u>exemple</u> : fusion coulée de bore à 2300°C sous argon pour l'obtention de pièces de forme

o TRAITEMENTS D'OXYDES A L'AIR

fusion, coulée, sphéroïdization, synthèses purification de composés oxydes <u>exemples</u> :

- synthèse de zircone stabilisée pour applications spéciales
- synthèse de gels à base de pentoxyde de vanadium pour des dorsales semi-conductrices de films
- purification d'alumine et de silice : voir figure n° 8.

OCHOCS THERMIQUES: EVALUATION DE MATERIAUX SOUS HAUT FLUX

- Echauffements rapides ou lents programmés .

- modulation du flux de 50 ms à plusieurs heures .
- contrôle des flux incidents et absorbés
- mesures des propriétés radio électriques sous haut flux <u>exemples</u>:
- -réfractaires sidérurgiques de poches de coulée
- -matériaux de protection des tours de centrales solaires
- fenêtres électromagnétiques : radomes, émetteurs radars multi canaux
- -matériaux ablatifs : têtes de missiles
- boucliers thermiques : astronautique

dispositif pour chocs thermiques

• EXPERIMENTATI	ON
ET EVALUATION	DE
RECEPTEURS OU	DE
BOUCLES THERMIQ	UES
SOLAIRES pour la conve	rsion
thermodynamique de la productio	n
de chaleur à usages industriels	5
(températures moyennes ou élevé	ées)

chaudière PIRDES à GILOIHERM en fonctionnement

chaudière PIRDES à GILOTHERM : vue rapprochée de l'intérieur de la cavité

- chaudière eau vapeur MARTIN MARIETTA 1976
- chaudière à huile (Gilotherm) minicentrale CNRS 1976/1977
- chaudière à air SIROCCO PIRSEM CNRS AFME 1982
- chaudière "à sable" boucle thermique à caloporteur solide divisé CNRS 1984

O APERÇU DES COLLABORATIONS DU SERVICE TRAITEMENTS DE MATERIAUX

France

- CERAVER (CGE)

- CEA
- SNIAS
- ONERA
- CNES
- IRSID
- SFC
- SFEC
- KODAK PATHE

USA

- GEORGIA, INSTITUTE OF TECH-
- NOLOGY
- MARTIN MARIETTA
- SANDIA NATIONAL LABORATORIES
- DEPARIMENT OF ENERGY
- DEFENCE NUCLEAR AGENCY
- SCIENCE APPLICATIONS INC
- RAYTHEON
- MAC DONNELL DOUGLAS
- JPL
- NASA
- HUGHES
- SPERRY

Adresses : . B.P. 5 - Odeillo-Via 66120 Font-Romeu Téléphone : 68.30.10.24 Télex : 500167 F . Université de Perpignan Avenue de Villeneuve 66025 Perpignan Téléphone : 68.51.00.51 Directeur : Marcel Amouroux, professeur à l'université de Perpignan Type de formation : laboratoire propre (LP 8521) Rattachement administratif. CNRS Année de création : 1948 (devenu laboratoire d'énergétique solaire en 1976) Effectif : 33 chercheurs dont 11 permanents (3 du CNRS) 18 ingénieurs, techniciens et administratifs dont 16 du CNRS Service traitement de matériaux : (four solaire de 1.000 kWt) même adresse Responsable : Claude Royère, ingénieur Effectif : 4 ingénieurs et techniciens du CNRS Les premiers essais d'obtention de très hautes températures

(>2.000° C) par voie solaire, pour leur application en chimie, ont été effectués à Meudon e 1946 à 1949 avec un miroir solaire de quelques kilowatts. Puis les recherches ont été menées à Mont-Louis entre 1949 et 1968 sur des fours solaires de diverses puissances et en particulier un four de 50 kW thermiques construit en 1952. Le laboratoire d'énergie solaire s'est ensuite installé à Odeillo (1968) dans un bâtiment dont la façade nord constitue le concentrateur de 1 000 kW du four solaire construit par extrapolation des résultats obtenus à Mont-Louis. Devenu en 1976 laboratoire d'énergétique solaire, en se diversifiant vers d'autres applications solaires, il possède actuellement, en plus de l'installation de 1.000 kWt un four solaire à axe vertical de 6,5 kWt et un four à axe horizontal de 45 kWt reconstruit à Mont-Louis. Depuis janvier 1985, le rattachement d'une équipe d'automaticiens de l'université de Perpignan conforte la pluridisciplinarité de l'équipe par l'introduction de l'automatique dans les études d'optimisation du fonctionnement des procédés. Le groupe des laboratoires d'Odeillo comprend également le laboratoire des ultra-réfractaires, et un service commun (gestion, administration, entretien, atelier,

hibliotheque).

Le four solaire de 1.000 KWt. Photo Cl. Gazuit

les activités du laboratoire

Principaux thèmes de recherche

• Transferts de chaleur à haute température.

Il s'agit de l'étude des processus couplés d'échanges de chaleur par rayonnement (pas de contact), par conduction (contact) et par convection (mouvement d'un fluide) se produisant à haute température. Ces travaux peuvent conduire, en particulier, à la mise au point de récepteurs solaires performants et d'échangeurs de chaleur efficaces. On peut citer les études sur les transferts de chaleur entre une paroi chauffée à 500-1100°C et un lit fluidisé (solide fin mis en mouvement par un gaz et apparaissant quasiment fluide) ou un lit fixe ; entre un matériau solide alvéolaire et un gaz ; ou bien encore dans un four tournant chauffé par rayonnement solaire. La connaissance des différents paramètres permet de déterminer les meilleures conditions opératoires.

La chaudière à sable qui est à l'étude au grand four de 1 000 kW est, actuellement, l'expérimentation la plus importante dans ce domaine utilisant les moyens solaires. Elle est composée d'un four rotatif solaire, dans lequel du sable est chauffé à raison de 200 kg/h, de deux stockages, l'un chaud, à 1 000°C, d'une capacité de 1 500 kg et l'autre froid, reliés à un échangeur de plusieurs étages, à lits fluidisés, permettant le transfert de l'énergie stockée dans le sable à un gaz tel que l'air.

Matériaux

Deux types d'études sont développés dans ce domaine :

- Caractérisation du comportement thermomécanique des réfractaires soumis à un choc thermique (expériences menées au four solaire de 1 000 kW).

- Recuit impulsionnel des surfaces. Ce dernier thème, initié récemment, a pour objectif la modification des propriétés de surface de certains matériaux par effet thermique brutal. Les résultats obtenus sont prometteurs, particulièrement dans le domaine des semi-conducteurs.

• Procédés soumis à une source d'énergie fluctuante et automatisation. On s'intéresse dans ce cadre aux procédés

On s'intéresse dans ce cadre aux procédés de stockage et de transformation de l'énergie solaire - ou de toute autre énergie dont la disponibilité (ou le coût) varie de façon importante au cours du temps -.

- Le stockage de l'énergie thermique sous forme chimique est avantageux car il est réalisé sans perte et sur de longues durées. La chaleur disponible à haute température peut être transformée et stockée chimiquement de deux manières différentes : par une réaction renversable endothermique-exothermique (comme celle de la chaux vive avec l'eau, donnant la chaux éteinte (ou hydratée), qui peut s'écrire dans les deux sens :

$$Ca (OH)_2 + chaleur < CaO + H_2O$$

ou par une réaction produisant un combustible riche en énergie comme l'hydrogène ou le méthane.

Dans le premier cas, une des études en cours est la mise au point d'un réacteur pour le système sulfate de magnésium, oxyde de magnésium-anhydride sulfurique dont la capacité de stockage est de 500 kWh/m³ de sulfate de magnésium.

La puissance dégagée par la réaction $MgO + SO_{4} \longrightarrow MgSO_{4}$ est très élevée : 10 MW/m³.

Dans le deuxième cas, on a l'avantage de pouvoir stocker l'énergie sous forme transportable. Parmi les sujets à l'étude, citons la gazéification du charbon et de la biomasse, ou encore la décomposition de l'eau, à plus de 2 500°C pour produire de l'hydrogène, ce qui implique la mise en œuvre de matériaux spécifiques. - On peut aussi envisager la valorisation des minerais par voie solaire, qui pourrait être un moyen de traiter les matériaux sur leur lieu de production, comme par exemple, le séchage des phosphates (Maroc), la décarbonatation de dolomie (Australie-Brésil).

Une partie essentielle de ces études vise à compenser le caractère aléatoire de l'énergie solaire par l'optimisation des procédés. La complexité des procédés et du fonctionnement des appareils

font que les modèles mathématiques qui résultent de l'analyse théorique nécessitent l'utilisation de méthodes sophistiquées afin de permettre l'automatisation des systèmes. Les algorithmes qui en résultent sont souvent difficiles à utiliser en temps réel, rendant nécessaires des approches sous-optimales. De plus, l'analyse théorique de la gestion des systèmes soumis à une source d'énergie fluctuante est utilisable dans d'autres domaines (heures de pointe, heures creuses à EDF par exemple). On peut citer comme applications : la gestion des apports d'énergie dans les serres agricoles de façon à minimiser les coûts d'exploitation, ou bien, le contrôle de ces mêmes apports pour des procédés de séchage utilisant l'énergie solaire.

D'autre part, d'autres résultats de ces recherches seront vérifiés et mis à l'épreuve dans une petite usine pilote de récupération solaire de solvants d'extraction d'huile, en construction à Gabés (Tunisie).

Métrologie

Les études en métrologie sont orientées dans deux axes principaux :

- La mesure et l'acquisition de données de rayonnement solaire constituent une base de travail essentielle pour toute étude de dimensionnement d'un système solaire. Les différentes composantes du rayonnement solaire ainsi que d'autres données météorologiques sont mesurées et analysées en vue d'établir des moyennes journalières, mensuelles, annuelles. Le traitement de ces données permet en outre d'obtenir des informations très utiles sur l'aspect dynamique de l'ensoleillement : longueur de séquences d'ensoleillement et fréquence de celles-ci. La banque de données constituée permet l'étude des rythmes d'ensoleillement. Ces résultats sont exploités dans les études d'automatisation des systèmes énergétiques fonctionnant au fil du soleil.

- Les études menées en métrologie à haute température ont pour but la conception de dispositifs nouveaux (fibre optique) permettant la mésure ponctuelle de densité de fiux et de température dans le spectre solaire et infrarouge sous conditions sévéres (accès difficile, température élevée).

Enfin des travaux sont développés concernant la mesure *in situ* de la variation du facteur d'absorption solaire sur des matériaux soumis à des essais d'évaluation de tenue aux chocs thermiques, sous haut flux de rayonnement solaire concentré.

Équipements

Concentrateurs solaires à double réflexion de 2 kWt, 6,5 kWt, 45 kWt, 1.000 kWt dont les éclairements maxima sont respectivement de 1.600 W/cm², 650 W/cm², 1.000 W/cm² et 1.200 W/cm²; mini-ordinateur Solar 16/40 16 bits 384 Ko, 5 *visu*, trois acquisitions de données autonomes couplées à des micro-ordinateurs HP85.

les ouvertures du laboratoire

Sur la communauté scientifique nationale

Le laboratoire entretient des relations privilégiées avec le laboratoire des ultra réfractaires, l'université de Perpignan et l'institut du génie chimique de Toulouse.

D'autres collaborations plus ponctuelles peuvent être citées : le laboratoire des sciences du génie chimique de Nancy, le laboratoire de génie et informatique chimique de l'ECAM Paris, i'équipe de recherche sur l'énergie de l'université Paul Sabatier de Toulouse.

Actions de formation

Stages de fin d'étude d'écoles d'ingénieurs, de DEA, en particulier de Perpignan, Toulouse, Grenoble. Les chercheurs du laboratoire encadrent également des étudiants préparant des thèses 3ème cycle, français ou étranger. Enfin les équipements spécifiques et le personnel technique qualifié favorisent l'accueil de chercheurs expérimentés pour des durées allant de quelques mois à plusieurs années.

Une maison d'accueil permet le logement de 3 à 4 personnes pour des durées courtes.

Un four solaire de recherche : puissance 6.5 kWt - axe vertical - modulation du flux au foyer

ANNEXE II

CALCUL DE LA POSITION DU SOLEIL

Il est nécessaire de se donner les moyens de calculer, en tout point de la surface du globe terrestre (mais Odeillo et Targassonne nous intéressent plus particulièrement), les angles en azimut et en hauteur a et h qui permettent de repérer la position du soleil dans le ciel. Nous décrivons ici un sous-programme de calcul rapide capable de déterminer ces angles en fonction de la latitude ϕ et de la longitude $\lambda_{\rm T}$ (comptée positivement à l'ouest de Greenwich) du point considéré, de son fuseau horaire F, de l'heure et de la date légale, et d'un paramètre supplémentaire D qui vaut l ou O suivant qu'il existe ou non un décalage horaire saisonnier (heure d'été ou d'hiver).

Le principe général du calcul est calqué sur celui qui a été exposé par R.Walraven [67] dans Solar Energy. Examinons rapidement celui-ci avant d'exposer les nombreuses corrections que nous avons dù effectuer par la suite.

On considère une sphère (sphère céleste) centrée sur un lieu d'observation O situé sur la surface de la terre. La verticale du lieu est matérialisée par un point Z (Zénith). L'axe de rotation terrestre est repéré par les points P et P' (Pôle nord et Pôle sud), et le cercle intersection de la sphère céleste et du plan de l'équateur terrestre est l'équateur céleste. Le cercle qui passe par les Pôles nord et sud et le Zénith est le méridien du lieu. L'intersection de l'équateur céleste avec le plan de l'horizon est une droite d'alignement Est-Ouest. La direction du soleil, qui est matérialisée par un point M situé sur la sphère céleste, peut alors être repérée en coordonnées horizontales : ce sont les angles a et h en azimut et en hauteur que nous cherchons (fig.l).

Les coordonnées équatoriales célestes présentent sur les coordonnées horizontales l'avantage de ne pas dépendre du lieu d'observation. Elles sont constituées de la déclinaison s, angle de la direction du soleil avec le plan de l'équateur céleste, et de l'ascension droite α , angle entre la direction d'un point donné y de

l'équateur céleste, appelé point vernal ou équinoxe (fig.l), et le cercle horaire de la direction du soleil. On définit également l'angle horaire H entre le méridien du lieu et le cercle horaire de la direction du soleil, et le temps sidéral T, angle entre la direction du point vernal y et le méridien du lieu. On a :

$$H = \alpha - T \qquad (A2-1)$$

Dans son mouvement autour du soleil, la terre reste dans un plan qui définit sur la sphère céleste le cercle écliptique (fig.2). Le point vernal y est en fait le point d'intersection de l'écliptique et de l'équateur céleste, qui correspond à la direction du soleil déclinaison s'annule en croissant (équinoxe lorsque 👘 sa. de printemps). L'angle entre les plans de l'écliptique et de l'équateur céleste est l'obliquité moyenne em. On introduit enfin les coordonnées écliptiques, latitude et longitude célestes, qui dans le cas du soleil se réduisent à sa longitude λ , puisque le soleil reste constamment dans le plan de l'écliptique.

Le principe du calcul de Walraven consistait donc, à partir de λ et ϵ_m , à déterminer s et α par les formules de passage du repère écliptique au repère équatorial :

> tg α = cos ε_m tg λ sin ε = sin ε_m sin λ

De là, par la connaissance du temps sidéral T, et en utilisant la relation (A2-1) pour en déduire l'angle horaire H, les angles a et h étaient calculés par les formules classiques de passage des coordonnées équatoriales aux coordonnées horizontales :

sin h = sin
$$\phi$$
 sin 5 + cos ϕ cos 5 cos H
(A2-3)
sin a = cos 5 sin H/cos h

Le problème se ramène donc à la connaissance de λ , ϵ_m et T. Walraven utilisait pour sa part des versions simplifiées des équations servant à générer l'Almanach Nautique américain, et rapportées au ler janvier 1980. Son sous-programme, qui assurait une précision de 0,01 degré sur les angles azimut et hauteur du soleil,

(A2-2)

pour des dates antérieures, semble avoir mal vieilli : des erreurs de l'ordre de l degré furent constatées pour trois journées-type de l'année 1986. Nous avons donc, avec l'aide du Service des Calculs et de Mécanique Céleste de l'Observatoire de Paris, introduit de nouvelles équations, ainsi que quelques corrections astronomiques dont l'effet n'est pas négligeable si l'on désire atteindre de telles précisions.

Précession et nutation

L'action conjuguée du soleil, de la lune, et des autres planètes du système solaire sur le renflement équatorial de l'ellipsoide terrestre a pour effet principal de déplacer la ligne des équinoxes, intersection des plans de l'équateur céleste et de l'écliptique (matérialisée par la droite Oy sur les figures 1 et 2), dans le plan de l'écliptique. La révolution complète de cette ligne équinoxiale s'effectue en 25760 ans et l'axe de rotation de la terre décrit pendant ce temps un cône d'angle au sommet 2em. Ce phénomène est connu sous le nom de précession, mais ne constitue que la partie uniforme d'un mouvement plus complexe, qui comprend également de petites oscillations beaucoup plus rapides de l'axe de rotation terrestre : c'est le mouvement de nutation. Lorsque ces deux phénomènes sont pris en compte dans les calculs de λ , ϵ_{in} et т, on parle alors de coordonnées "vraies".

Aberration du soleil

Cette correction est liée au déplacement de l'observateur terrestre dans l'espace avec une vitesse non négligeable par rapport à la vitesse de la lumière. Elle intervient sur la longitude vraie λ qui devient alors la longitude apparente.

Correction de parallaxe

La distance terre-soleil n'étant pas infinie, il est nécessaire d'introduire une correction sur s et H liée au passage de coordonnées géocentriques (rapportées au centre de la terre) à des coordonnées topocentriques (rapportées au point O). Dans le cas du soleil cette correction est toutefois négligeable.

Correction de réfraction

La réfraction atmosphérique est responsable de la déviation des rayons lumineux suivant les lois de l'optique géométrique. Cette correction est effectuée sur l'angle de hauteur h.

Expression du temps t

Celui-ci est exprimé en nombre de jours juliens écoulés depuis une date référence qui est J2000,0 (ler janvier 2000, à 12 heures GMT). Pour une date antérieure à cette date référence, l'expression du temps t est donnée par :

t = E(365,25 x (2000 - An)) + N - 0,5 + TU/24 où An est l'année grégorienne et N est le numéro du jour de l'année considéré. TU est le temps universel (temps de Greenwich) qui s'obtient par la relation :

$$\frac{\text{Min} + \frac{\text{Sec}}{60}}{\text{F} - D}$$

où Hr, Min et Sec définissent l'heure locale, et F et D ont déjà été définis plus haut.

Longitude apparente du soleil

Elle s'obtient par la relation générale:

$$\lambda = \lambda_m + Eqc + As + \Delta \Psi$$

* λ_m est la longitude moyenne du soleil, débarrassée des variations périodiques de vitesse angulaire de la terre le long de son orbite elliptique :

 $\lambda_{\rm m} = 280^{\circ}27^{\circ}59^{\circ}, 2146 + 1 296 027 713^{\circ}, 6329 - \frac{t}{365250}$ (*)

* Eqc est l'équation du centre qui définit les variations périodiques évoquées plus haut :

Eqc =
$$(2e - \frac{e^3}{4})$$
 sin M + $\frac{5}{4}e^2$ sin 2M + $\frac{13}{12}e^3$ sin 3M + (**)

où e est l'excentricité de l'orbite terrestre donnée par :

$$e = 0,016\ 709\ 114\ -\ 0,000\ 418\ \frac{t}{365250}$$
 (**)

et M = $\lambda_m - \omega$ (ω étant la longitude du périhélie de l'orbite terrestre). M est donné par :

 $M = 357^{\circ}, 529 \ 103 \ + \ 359 \ 990^{\circ}, 508 \ 421 \ \frac{t}{365250}$

$$-0^{\circ},098\;332\;\left[\frac{t}{365250}\right]^{2}$$
 (**)

* As est l'aberration du soleil : As = - 20",495 52 (l - k cos λ_m - h sin λ_m) (*) où h et k sont les constantes d'aberration données par : k = - 0,003 740 816 - 0,004 793 106 $\frac{t}{365250}$ (*) h = 0,016 284 477 - 0,001 532 379 $\frac{t}{365250}$ (*)

* $\Delta \Psi$ est la correction de nutation en longitude que l'on réduit ici au premier terme des tables de Wahr :

(*)

$$\Delta \Psi = -17", 1996 \sin \Omega$$
 (*)

où Ω est la longitude du noeud ascendant de l'orbite lunaire, donnée par :

 $\Omega = 125^{\circ}2'40'', 398 16 - 6 962 890'', 2656 \frac{t}{36525}$

Obliquité vraie

Elle est donnée par la relation générale :

$$\epsilon = \epsilon_m + \Delta \epsilon$$

* ϵ_m est l'obliquité moyenne :

$$e_{\rm m} = 84381",448 - 468",150 \frac{t}{365250}$$
 (*)

* $\Delta \epsilon$ est la correction de nutation en obliquité réduite au premier terme des tables de Wahr :

 $\Delta \epsilon = 9",2025 \cos \Omega \qquad (*)$

où Ω a déjà été défini plus haut.

Temps sidéral local vrai

Il s'obtient par la relation suivante :

$$T = e + 1,002 7379 TU - \lambda_T + \Delta \Psi \cos \epsilon_m$$

 $\lambda_{\rm T}, \ \Delta \Psi$ et $\epsilon_{\rm M}$ ont été définis plus haut et e est le temps sidéral moyen de Greenwich à Oh UT. Il est donné par :

442 -

<u>Fig: 3</u>

$\theta = 6^{h} 41^{m} 50^{s}, 548 41 + 8 640 184^{s}, 812 866 \frac{t}{36525}$

En toute rigueur, e devrait être calculé pour une valeur de TU=0 dans l'expression de t (il est logique que le temps sidéral à Oh UT ne dépende pas du temps UT). Mais il est équivalent d'utiliser l'expression de e calculée avec le temps t que nous avons employé jusqu'ici, à condition de faire disparaître le facteur de conversion du temps UT en temps sidéral 1,002 7379. L'expression de T est alors simplifiée :

 $T = \theta + TU - \lambda_T + \Delta \Psi \cos \epsilon_m$

Correction de réfraction

Elle est donnée par la formule de Laplace :

 $h(corrigé) = h - 60", 29 tg(\pi/2-h)$

Mais cette relation n'est plus valable pour des angles h inférieurs à 20°.

Nous donnons figure 3 l'organigramme du sous-programme de calcul qui a été réalisé sur ces bases. Les résultats qu'il donne pour les angles en azimut et hauteur définissant la direction du soleil, ont été comparés avec des valeurs références fournies par le Service des Calculs et de Mécanique Céleste de l'Observatoire de Paris, pour trois journées-type de l'année 1986, et pour le site d'Odeillo. La précision de notre sous-programme a ainsi pu être évaluée à 0,001° pour les journées du 20/3/86 et du 21/6/86, et à 0,01° pour la journée du 21/12/86. Ces précisions sont nettement meilleures que celle que nous nous étions imposée à l'avance (le dixième du diamètre angulaire du soleil, soit 0,05°).

Les relations marquées d'un astérisque peuvent être trouvées dans les parutions annuelles des éphémérides astronomiques de la Connaissance des Temps, éditées par la maison Gauthier-Villars. Les relations marquées de deux astérisques nous ont été communiquées directement par le Service des Calculs et de Mécanique Céleste de l'Observatoire de Paris. Nous remercions particulièrement Mme L.Bergeal pour son aide précieuse.

(*)

(*)

ANNEXE III

DIMENSIONS ET GEOMETRIE DE L'HELIOSTAT CETHEL III bis

Dimensions

Il s'agit en fait de l'ensemble des cotes qui délimitent les contours des composants de la surface réflectrice (modules et miroirs élémentaires), ainsi que leurs positions relatives. Il a notamment été tenu compte des interstices entre les modules, et des interstices entre les miroirs élémentaires, qui sont en principe égaux à la largeur de la tige supportant les plots de fixation (en théorie 22mm; en fait 24mm). Toutes ces cotes, ainsi que quelques éléments permettant de replacer les centres des neuf modules qui constituent l'héliostat, sont indiqués sur la figure l. On rappelle que les huit modules courants sont absolument identiques, et que la surface de l'héliostat présente une symétrie par rapport à son centre 0. Les dimensions adoptées ici résultent de la confrontation entre certaines mesures relevées sur l'héliostat lui-même et les cotes théoriques publiées dans [72] et [73]. Enfin nous n'avons pas tenu compte de l'influence des plots de focalisation, qui couvrent un pourcentage négligeable de la surface réflectrice totale.

Géométrie des modules réflecteurs

Nous établissons ici l'équation caractéristique de la surface réflectrice d'un module courant de l'héliostat CETHEL III bis, rapporté à un repère (OXYZ) (fig.2). On sait que la surface est composée de trois sections cylindriques rectangulaires, chacune constituée de deux miroirs élémentaires, et mises en regard de manière à tangenter toutes trois une sphère de rayon égal à $2f_M$ (f_M étant la focale du module). Sur chaque section cylindrique, le rayon de courbure est infini suivant l'axe OY, et égal à $2f_M$ suivant l'axe OZ. De plus, l'axe des cylindres est toujours contenu dans le plan OXY.

On considère la section cylindrique de centre 0^* (fig.2). Si 2a est la largeur du miroir élémentaire et a₀ est l'interstice entre deux sections cylindriques (fig.2 et 3), les coordonnées de 0^* peuvent s'écrire, dans le repère OXYZ :

fig 1

$$2f_{M} - \sqrt{4f_{M}^{2} - \chi^{*2}}$$

 χ^{*}

où $Y^* \approx 2a + a_0 : 0^*$ appartient en effet à la sphère centrée au point C de coordonnées ($2f_M, 0, 0$). Ceci nous permet d'exprimer les composantes du vecteur unitaire \vec{u} dirigé suivant la droite 0^*C :

$$\vec{u} = \begin{bmatrix} \sqrt{1 - \frac{(a+a_0/2)^2}{f_M^2}} \\ -\frac{a+a_0/2}{f_M} \\ 0 \end{bmatrix}$$

On considère maintenant \vec{v} , vecteur unitaire dirigé suivant l'axe du cylindre auquel appartient la section de centre O^{*}. \vec{v} se déduit facilement de \vec{u} :

$$\vec{v} = \begin{cases} \frac{a+a_0/2}{f_M} = n_1 \\ \sqrt{1 - \frac{(a+a_0/2)^2}{f_M^2}} = n_2 \\ 0 \end{cases}$$

avec $n_2 = \sqrt{1-n_1^2}$. L'équation de la surface cylindrique s'obtient en écrivant que pour tout point P de coordonnées (X,Y,Z) appartenant à la section considérée, la distance de P à la droite (D) issue de C et dirigée par \vec{v} est égale à $2f_M$. Si C' est un point courant de cette droite, de coordonnées ($2f_M + \lambda n_1, \lambda n_2, 0$), l'expression des composantes du vecteur \overrightarrow{PC} ' est alors :

$$\overrightarrow{PC'} = \begin{bmatrix} 2f_M + \lambda n_1 - X \\ \lambda n_2 - Y \\ - Z \end{bmatrix}$$

D'autre part, on sait que $|| \overrightarrow{PC'} ||$ sera égal à la distance du point P à la droite (D) si et seulement si : $\overrightarrow{PC'} \cdot \overrightarrow{v} = 0$ Cette condition nous permet de trouver que :

$$\lambda = n_1 X + n_2 Y - 2n_1 f_M$$
 (A3-1)

Il est alors possible d'écrire, en reprenant les composantes

447

đe PC'

$$\overline{PC^{12}} = 4f_M^2 = 4f_M^2 + X^2 + Y^2 + Z^2 - \lambda^2$$
 (A3-2)
En remplaçant (A3-1) dans (A3-2), on aboutit à une expression assez
simple de X en fonction de Y et Z, qui nous donne l'équation caractéristique
du module courant de l'héliostat focalisant CETHEL III bis.

$$X = f(Y,Z) = 2f_{M} + \frac{n_{1}}{n_{2}}Y - \frac{1}{n_{2}}\sqrt{4f_{M}^{2} - Z^{2}}$$
(A3-3)

$$n_{1} = \frac{a+a_{0}/2}{f_{M}}$$
 si $a+a_{0} \leq Y \leq 3a+a_{0}$

$$n_{1} = 0$$
 si $-a \leq Y \leq a$

$$n_{1} = -\frac{a+a_{0}/2}{f_{M}}$$
 si $-3a-a_{0} \leq Y \leq -a-a_{0}$

L'équation caractéristique du module complémentaire reste la même, avec :

$$n_{1} = \frac{a_{c} + a_{0}/2}{2f_{M}} \qquad \text{si } Y \ge 0$$

$$n_{1} = -\frac{a_{c} + a_{0}/2}{2f_{M}} \qquad \text{si } Y \le 0$$

où 2a_C est la largeur des miroirs élémentaires qui constituent ce module.

Enfin on donne l'expression de f(Y,Z) développée au deuxième ordre, compte tenu de ce que n₁ << n₂ et n₂ \approx 1 $-n_1^2/2$;

$$X = f(Y,Z) \approx n_1 Y + \frac{Z^2}{4f_M}$$
 (A3-4)

ANNEXE IV

MODELISATION DU CONCENTRATEUR DU FOUR SOLAIRE DE 1000 kW D'ODEILLO

Cette modélisation est basée sur les quelques observations simples qui ont été relatées dans le paragraphe 4.2.3 du chapitre II. Nous ne les reprendrons donc pas ici.

Le paraboloide est rapporté à un repère (SXYZ), où S est le sommet de sa surface, et SX est son axe horizontal Sud-Nord. L'axe SY, qui est lui aussi contenu dans le plan horizontal, est dirigé vers l'Ouest, tandis que l'axe SZ repère la verticale du lieu. Le découpage en facettes réflectrices de la surface du paraboloide est symétrique par rapport au plan SXZ : nous pourrons donc limiter les calculs à la moitié Ouest de la surface réflectrice. Par contre, il n'existe pas de symétrie par rapport au plan horizontal SXY. Le paraboloide est découpé en 8 étages de hauteur h = 5m et dont les cotes sont données dans le tableau I. Le sommet et le foyer du paraboloide sont situés à 3m au dessus du niveau du troisième étage. Chaque demi-étage comporte un nombre variable de panneaux rectangulaires séparés par un interstice ΔP (tableau I).

Numéro d'étage	cote de la base de l'étage (m)	nombre de panneaux	ΔP (mm)
8	22	7	20
7	17	10	22
6	12	11	25
5	7	12	27
4	2	12	28
3	- 3	11	25
2	- 8	11	26
1	- 13	10	37

Tableau I

Le principe de la modélisation consiste donc à déterminer les coordonnées et les dimensions de toutes les facettes qui constituent un panneau , puis à recommencer cette opération pour le panneau voisin, ceci jusqu'à arriver au panneau marginal de l'étage considéré; ces séquences de calcul sont ensuite répétées sur chacun

EST :

fig 1 : Coin d'ombre entre deux panneaux réflecteurs.

fig 2 : Biseautage des panneaux de la partie supérieure du paraboloide. des étages du concentrateur.

Modélisation d'un panneau

On sait qu'il n'est pas possible de tapisser un paraboloide de révolution d'un ensemble de panneaux rectangulaires; Nous considérons que la base d'un panneau est toujours constituée d'une rangée de 5 facettes réflectrices de dimensions standard (il s'agit de facettes carrées de 48,5 x 48,5 cm montées sur une ossature métallique de 49 x 49 cm). C'est dans les rangées supérieures du panneau qu'apparaissent des différences, en fonction de l'emplacement de celui-ci sur la surface du paraboloide :

1) Si le panneau est situé au dessous du plan horizontal (Z<O), il apparaît des coins d'ombre entre les panneaux rectangulaires (fig.l). Ceci se traduit par une perte en concentration, qui, sur l'installation d'Odeillo, a pu être partiellement compensée par le choix de facettes réflectrices de largeur légèrement supérieure à la largeur standard sur la première colonne des panneaux. Nous n'avons pas tenu compte ici de ces compensations.

2) Si le panneau est situé au dessus du plan horizontal (Z>O), il est nécessaire de le biseauter : cela implique d'utiliser des facettes de largeur inférieure à la largeur standard sur la première colonne du panneau (fig.2). De plus cette largeur est différente pour chaque rangée de facettes considérée, et diminue avec la hauteur de celle-ci sur le panneau. Sur le concentrateur d'Odeillo, ce problème a été résolu par le choix d'une trentaine de largeurs standard différentes pour ces facettes rognées. Nous avons quant à nous donné à chacune de ces facettes sa largeur idéale, c'est-à-dire celle qui minimise les interstices entre les facettes de deux panneaux voisins.

L'exploration du panneau lui-même, que nous noterons P_n , se fait de la manière suivante (fig.2) :

1) le point de départ A_0 est situé au coin inférieur Est de la première rangée de facettes réflectrices du panneau. On détermine successivement tous les coins inférieurs A_1 , A_2 , A_3 , A_4 et A_5 des facettes de la première rangée, qui sont situés sur une coupe horizontale du paraboloïde, par le système d'équations (A4-1)(voir plus loin).

2) on passe de A_5 au point A_6 , coin supérieur Ouest de la dernière facette appartenant à la première rangée du panneau, par

3) les points A7, A8, A9, A10 et A11 sont successivement déterminés par le système d'équations (A4-1). Il est alors possible, connaissant les coordonnées des quatre coins d'une facette réflectrice de la première rangée (par exemple A1, A2, A9 et A10), d'en déduire les coordonnées de son centre : cela se fait de manière arbitraire, puisqu'on sait que les quatre points considérés ne peuvent constituer un carré (ils appartiennent en effet tous les quatre à la surface du paraboloide). On décide que le centre de la facette considérée est confondu avec le milieu de la diagonale descendante Est-Ouest (A10A2 pour notre exemple), et on attribue à cette facette les dimensions standard de 49 x 49 cm.

D'autre part, dans le cas de la facette appartenant à la première colonne (ici A₀ A₁ A₁₀ A₁₁), il y a lieu de tester le point A₁₁ afin de savoir s'il déborde sur le panneau P_{n-1} situé immédiatement à l'Est de celui qui est considéré. Si tel est le cas, A₁₁ doit être remplacé par un point A'₁₁ plus proche de A₁₀, et dont la distance à P_{n-1} est égale à l'interstice ΔP entre les panneaux de l'étage considéré. La détermination des coordonnées du centre de cette facette, ainsi que sa hauteur, s'effectue de la même manière que pour une facette standard, tandis que sa largeur est prise égale à la distance A₁₀ A'₁₁.

4) Les points A7, A8, A9, A10 et A¹₁₁ constituant également les coins inférieurs de la deuxième rangée de facettes réflectrices du panneau, les séquences de calcul 2 et 3 sont répétées et permettent de reconstituer, par rangées successives, l'implantation de toutes les facettes du panneau. Sauf dans le cas du huitième étage, la dernière et plus haute rangée de facettes sera toujours ombrée par le bas des panneaux situés à l'étage supérieur. Les relations (A4-5) permettent de calculer sa hauteur effective, et la séquence 3 est alors appliquée une dernière fois afin de déterminer les autres paramètres des facettes qui équipent cette rangée supérieure.

Nous donnons sur la figure 3 un organigramme très simplifié du code de calcul qui réalise cette modélisation. En jouant sur l'interstice ΔP entre les panneaux, il a été possible de se rapprocher, pour chaque étage, à moins de lOcm des valeurs traditionnellement adoptées pour leur largeur totale. En l'absence de relevés topographiques effectués sur les facettes elles-mêmes, il semble illusoire de rechercher une meilleure précision, d'autant

qu'une erreur de quelques centimètres sur les coordonnées réelles d'une facette réflectrice n'est pas très grave, vu la distance qui la sépare du point focal.

Résolution numérique

On considère les points A_{n-1} , A_n et A_{n+1} situés aux coins d'une facette réflectrice standard appartenant à la colonne Ouest d'un panneau (fig.4). Les points A_{n-1} et A_n appartiennent à la courbe (C₁), coupe horizontale du paraboloide à altitude z_0 , et les points inscrite le A_n et A_{n+1} appartiennent à la courbe (C₂), sur paraboloide, et perpendiculaire à (C_1) en A_n . On cherche les relations qui permettent de déduire A_n de A_{n-1} , d'une part, et A_{n+1} de A_n , d'autre part.

Coupe horizontale du paraboloïde (séquence 1,3 et 4)

Soient (X_{n-1}, Y_{n-1}) et (X_n, Y_n) respectivement les coordonnées de A_{n-1} et A_n dans le plan horizontal d'équation $Z=z_0$ (fig.5). $e \int \Delta \mathbf{X} = \mathbf{X}_n - \mathbf{X}_{n-1}$

$$\Delta \mathbf{Y} = \mathbf{Y}_n - \mathbf{Y}_{n-1}$$

 ΔX et ΔY sont bien entendu les composantes du vecteur $\overline{A_{n-1}}$ $\overline{A_n}$. Par ailleurs An-1 et An satisfont à deux conditions :

1) A_{n-1} et A_n appartiennent à (C₁). On peut donc écrire, si f est la focale du paraboloïde :

$$X_n = \frac{Y_n^2 + z_0^2}{4f}$$
 et $X_{n-1} = \frac{Y_{n-1}^2 + z_0^2}{4f}$

d'où l'on tire $\Delta X = \frac{\Delta Y(\Delta Y + 2 Y_{n-1})}{4f}$

2) $||A_{n-1}A_n||$ est égal à la largeur de l'ossature métallique d'une facette standard. Alors :

 $||\overline{A_{n-1}} A_n|| = a = \sqrt{\Delta x^2 + \Delta y^2}$ On a donc à résoudre le système : $\int a^2 = \Delta X^2 + \Delta Y^2$ $\int 4f\Delta X = \Delta Y (\Delta Y + 2Y_{n-1})$

Ce système conduit à une équation du quatrième degré que l'on pourrait résoudre par une méthode numérique. Pratiquement il est plus intéressant de la

(A4-1)

mettre sous la forme :

$$\Delta Y = \text{sign} (\Delta Y) - \frac{a}{\sqrt{1 + \frac{(\Delta Y + 2Y_{n-1})^2}{16f^2}}}$$
(A4-2)

équation en ΔY que l'on résoudra par la méthode X=f(X). ΔX se déduit ensuite facilement du système (A4-1).

Courbe $(C_2)(sequence 2)$

 (X_n, Y_n, Z_n) et $(X_{n+1}, Y_{n+1}, Z_{n+1})$ sont respectivement les coordonnées de A_n et A_{n+1} dans le repère (SXYZ). On pose :

$$\Delta \mathbf{x} = \mathbf{x}_{n+1} - \mathbf{x}_n$$
$$\Delta \mathbf{y} = \mathbf{y}_{n+1} - \mathbf{y}_n$$
$$\Delta \mathbf{z} = \mathbf{z}_{n+1} - \mathbf{z}_n$$

D'autre part, A_n et A_{n+1} satisfont à trois conditions :

1) A_n et A_{n+1} appartiennent au paraboloïde. On peut écrire :

$$x_{n+1} = \frac{Y_{n+1}^2 + Z_{n+1}^2}{4f}$$
 et $x_n = \frac{Y_n^2 + Z_n^2}{4f}$

d'où l'on tire :
$$\Delta X = \frac{\Delta Y(\Delta Y + 2Y_n) + \Delta Z (\Delta Z + 2Z_n)}{4f}$$

2) || $\overline{A_n} A_{n+1}$ || est égal à la largeur de la facette réflectrice standard. Alors :

$$||A_n A_{n+1}|| = a = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$$

3) $\overline{A_n A_{n+1}}$ est orthogonal à $\overline{A_{n-1} A_n}$. Ce dernier a pour composantes :

$$\overline{A_{n-1} A_n} = \begin{bmatrix} \frac{(Y_n + Y_{n-1})(Y_n - Y_{n-1})}{4f} \\ Y_n - Y_{n-1} \\ 0 \end{bmatrix}$$

et est en fait proportionnel au vecteur $\overrightarrow{N_n}$ de composantes :

$$\overline{N_n} = \begin{bmatrix} Y_n + Y_{n-1} = n_1 \\ 4f = n_2 \\ 0 \\ Alors \overline{A_n A_{n+1}}, \ \overline{N_n} = n_1 \ \Delta X + n_2 \ \Delta Y = 0 \end{bmatrix}$$

- 458 -

On a donc à résoudre le système : $\begin{cases}
4f\Delta X = \Delta Y(\Delta Y+2Y_n) + \Delta Z(\Delta Z+2Z_n) \\
a^2 = \Delta X^2 + \Delta Y^2 + \Delta Z^2
\end{cases}$ (A4-3) 0 = n₁ \Delta X + n₂ \Delta Y

De même que dans le cas de la courbe (C_1) , ce système conduit à une équation de type X=f(X) en ΔZ :

$$\Delta Z = \frac{a \sqrt{k^2 - 4Z_n n_1^2 \Delta Z - a^2 n_1^4 / (n_1^2 + n_2^2)}}{\sqrt{k^2 + 2a^2 n_1^2 n_2^2 / (n_1^2 + n_2^2)} + \left[\frac{n_2^2 \Delta Z}{n_1^2 + n_2^2} + 2Z_n\right]^2 (n_1^2 + n_2^2)}$$
(A4-4)

où k = $2Y_n n_1 + 4f n_2$

Cette relation, qui est plus complexe que la relation (A4-2)est pourtant du même type. En effet, il suffit de choisir $n_1=0$ et $n_2=1$ pour retrouver une équation semblable à (A4-2) en ΔZ . On peut donc se limiter, dans les deux cas, à utiliser l'équation d'expression générale (A4-4). Comme on l'a vu plus haut, sa résolution s'effectue par la méthode X=f(X), qui assure une convergence d'autant plus rapide que $\{f'(X)\}$ est faible devant l; cela est pleinement réalisé ici puisque une ou deux itérations suffisent en pratique pour obtenir une précision inférieure au dixième de millimètre sur ΔZ . ΔY s'obtient alors par la relation :

$$\Delta Y = - \operatorname{sign}(a/2 + Z_n) \frac{n_1^2 \sqrt{a^2 - \Delta Z^2}}{n_1^2 + n_2^2}$$

et ΔX se déduit facilement de ΔY et ΔZ par la première relation du système (A4-3).

Courbe(C₂) : cas de la rangée supérieure du panneau (séquence 4)

On a ici à résoudre un système d'équations identique au système (A4-3), avec cette différence que ΔZ est connu et noté Δz_0 . Le système conduit alors à une équation du second degré dont on déduit l'expression de ΔY :

$$\Delta Y = -\left[Y_{n} + 2f \frac{n_{2}}{n_{1}}\right] + \sqrt{\left[Y_{n} + 2f \frac{n_{2}}{n_{1}}\right]^{2} - \Delta z_{0} (\Delta z_{0} + 2Z_{n})}$$
(A4-5)

et là aussi, ΔX se calcule facilement à partir de ΔY et Δz_0 par la première relation du système (A4-5).

Pour conclure, nous reproduisons figure 6 le résultat de

fig 6 : Modélisation du concentrateur du four de 1000 kW d'Odeillo. notre modélisation du concentrateur du four de 1000 kW d'Odeillo, projeté ici sur le plan SY2. On peut constater que les panneaux sont le plus souvent constitués de 55 ou 60 facettes réflectrices, qui sont individuellement représentées par des points. Les facettes qui se trouvent dans l'ombre du bâtiment foyer n'apparaissent pas ici.

ANNEXE V

EXPRESSION DU RELIEF D'UNE FACETTE DE CONCENTRATEUR LOCALEMENT PARABOLOIDALE

On considère un concentrateur paraboloidal d'axe horizontal SX, rapporté à un repère orthonormé (SXYZ)(fig.1), où S est le sommet du paraboloide, SY est un axe également contenu dans le plan horizontal, et SZ est dirigé suivant la verticale de S. Le concentrateur est en réalité constitué d'un ensemble de facettes réflectrices, dont les centres Oi sont individuellement repérés sur la surface du paraboloide par les angles i_0 et u_0 (fig.1).

Nous cherchons ici l'équation caractéristique du paraboloïde rapportée à un repère orthonormé (OiXoiYoiZoi) lié à une facette de centre Oi; on sait que celle-ci doit en effet reproduire ce relief idéal sur toute sa surface. Par construction l'axe OiXoi sera dirigé par le vecteur unitaire \vec{n} normal à la facette, tandis que l'axe OiYoi, qui est dirigé par le vecteur unitaire \vec{v} , reste contenu dans un plan horizontal. Enfin l'axe OiZoi est dirigé par un vecteur unitaire \vec{w} , choisi de manière à compléter le trièdre.

Un deuxième repère (OiXoiYtZt) peut être lié à la facette, ainsi qu'au plan d'incidence des rayons solaires, qui est matérialisé par le triangle OiSF, ou par les vecteurs \overrightarrow{OiF} et \overrightarrow{n} . Ce dernier dirige toujours l'axe OiXoi, mais les axes OiYt et OiZt sont respectivement parallèle et perpendiculaire au plan d'incidence. Ils sont dirigés par les vecteurs unitaires \overrightarrow{t} et $\overrightarrow{\sigma}$ (fig.l). On pose :

$$\phi_0 = (\vec{v}, \vec{t}) = (\vec{w}, \vec{\sigma})$$

Les coordonnées de \vec{n} et \vec{t} s'expriment dans le repère (SXYZ) :

	cos io]	-	sin	io
n =	- sin u _o sin i _o	et $\vec{t} =$	-	sin	u _o cos i _o
	cos u _o sin i _o	l	-	COS	u _o cos i _o

et $\vec{\sigma}$ s'obtient par le produit vectoriel de \vec{n} et \vec{t} . On trouve :

$$\vec{\sigma} = \begin{bmatrix} 0 \\ -\cos u_0 \\ -\sin u_0 \end{bmatrix}$$

Par ailleurs, les composantes de \vec{v} se déduisent de celles de \vec{n} , étant donné que \vec{v} appartient à un plan horizontal, et que $\vec{v} \cdot \vec{n} = 0$.

$$\vec{v} = \frac{1}{\sqrt{1 + \sin^2 u_0 tg^2 i_0}} \begin{bmatrix} \sin u_0 tg i_0 \\ 1 \\ 0 \end{bmatrix}$$

Des expressions de \vec{t} et \vec{v} , on tire alors les relations :

$$\cos \phi_0 = - \frac{\sin u_0}{\cos i_0 \sqrt{1 + \sin^2 u_0 tg^2 i_0}}$$

(A5-1)

$$\sin \phi_0 = \frac{\cos u_0}{\sqrt{1 + \sin^2 u_0 tg^2 i_0}}$$

Une fois que la valeur de ϕ_0 est connue, le calcul de l'équation caractéristique de la surface localement paraboloïdale pour la facette de centre Oi s'effectue en deux étapes : l'équation est d'abord établie dans le repère (OiXoiYtZt), puis dans le repère (OiXoiYoiZoi) par application de la matrice de passage P' de (OiXoiYtZt) à (OiXoiYoiZoi); il s'agit d'une simple rotation autour de l'axe OiXoi:

$$P' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_0 & \sin \phi_0 \\ 0 & -\sin \phi_0 & \cos \phi_0 \end{bmatrix}$$

Expression du relief dans le repère (OiXoiYtZt)

On note (X,Y,Z) les coordonnées dans (SXYZ) d'un point P situé sur la surface du paraboloïde et appartenant à la facette réflectrice de centre Oi, et (X_{OI}, Y_{OI}, Z_{OI}) les coordonnées de Oi dans (SXYZ). On cherche à déterminer les relations qui lient entre elles les coordonnées du point P (A_p, B_p, C_p) exprimées dans le repère (OiXoiYtZt). Pour cela on utilisera deux paramètres ΔY et ΔZ :

$$\Delta Y = Y - Y_{oi}$$

 $\Delta Z = Z - Z_{oi}$

et on exprime alors les coordonnées du vecteur $\overline{\text{OiP}}$ dans (SXYZ) en fonction de ΔY et ΔZ :

$$\overline{DiP} = \begin{cases} \frac{\Delta Y(\Delta Y + 2Y_{OI})}{4f} + \frac{\Delta Z(\Delta Z + 2Z_{OI})}{4f} \\ \Delta Y \\ \Delta Z \end{cases}$$

ou, compte tenu que : Yoi = 2f sin uo tg io

et :
$$Z_{OI} = -2f \cos u_O tg i_O$$

$$OIP = \begin{bmatrix} \frac{\Delta Y^2 + \Delta Z^2}{4f} + tg i_O (\sin u_O \Delta Y - \cos u_O \Delta Z) \\ \Delta Y & (A5-2) \\ \Delta Z & \end{bmatrix}$$

Par ailleurs, la matrice de passage P du repère (OiXoiYtZt) au repère (SXYZ) se déduit des composantes des vecteurs \vec{n} , \vec{t} et $\vec{\sigma}$ dans (SXYZ) :

 $\mathbf{P} = \begin{bmatrix} \cos \mathbf{i}_0 & -\sin \mathbf{u}_0 \sin \mathbf{i}_0 & \cos \mathbf{u}_0 \sin \mathbf{i}_0 \\ -\sin \mathbf{i}_0 & -\sin \mathbf{u}_0 \cos \mathbf{i}_0 & \cos \mathbf{u}_0 \cos \mathbf{i}_0 \\ 0 & -\cos \mathbf{u}_0 & -\sin \mathbf{u}_0 \end{bmatrix}$

L'application de la matrice P aux composantes de OiP exprimées par la relation (A5-2) nous permet d'arriver à un système d'équations liant A_p, B_p et C_p aux paramètres ΔY et ΔZ :

$$A_{p} = \cos i_{0} \frac{\Delta Y^{2} + \Delta Z^{2}}{4f}$$

$$B_{p} = -\sin i_{0} \frac{\Delta Y^{2} + \Delta Z^{2}}{4f} - \frac{\sin u_{0} \Delta Y - \cos u_{0} \Delta Z}{\cos i_{0}}$$

$$C_{p} = -\cos u_{0} \Delta Y - \sin u_{0} \Delta Z$$
(A5-3)

L'équation caractéristique du relief de la facette localement paraboloidale s'obtient par élimination des paramètres AY et AZ. Celle-ci peut être effectuée de manière exacte ou approchée, suivant que l'on cherche à déterminer précisément le relief de la facette, ou que l'on désire seulement calculer ses éléments de courbure.

Expression exacte

On peut écrire, d'après la première relation du système (A5-3) :

$$\sin i_0 \frac{\Delta Y^2 + \Delta Z^2}{4f} = A_p tg i_0$$

Les deux dernières relations du système (A5-3) conduisent alors à un système linéaire en ΔY et ΔZ , dont les solutions s'expriment :

 $\Delta Y = -A_p \sin i_0 \sin u_0 - B_p \cos i_0 \sin u_0 - C_p \cos u_0$

 $\Delta Z = A_p \sin i_0 \cos u_0 + B_p \cos i_0 \cos u_0 - C_p \sin u_0$

Ces expressions de ΔY et ΔZ sont ensuite reportées dans la première relation du système (A5-3). On obtient alors une équation du second degré en A_p, qui nous permet finalement de l'exprimer en fonction de B_p et C_p.

$$A_{p} = -\frac{1}{\sin^{2}i_{o}} \left[\frac{2f}{\cos i_{o}} - \cos i_{o} \sin i_{o} B_{p} - \sqrt{\frac{4f^{2}}{\cos^{2}i_{o}} - 4f \sin i_{o} B_{p} - \sin^{2}i_{o} C_{p}^{2}} \right]$$
(A5-4)

Expression approchée

On néglige dans ce cas le terme

466 -
$$-\sin i_0 \frac{\Delta Y^2 + \Delta Z^2}{4f}$$

dans l'expression de la deuxième relation du système (A5-3). Dans ces conditions les deux dernières relations de ce système constituent un système linéaire que l'on résoud facilement :

467 -

$$\Delta Y = -B_p \cos i_0 \sin u_0 - C_p \cos u_0$$

 $\Delta Z = B_p \cos i_0 \cos u_0 - C_p \sin u_0$

Ces expressions simplifiées de AY et AZ sont ensuite reportées dans la première relation du système (A5-3), et l'on obtient alors directement :

$$A_{\rm p} = \frac{B_{\rm p}^2}{4f/\cos^3 i_{\rm o}} + \frac{C_{\rm p}^2}{4f/\cos i_{\rm o}}$$
(A5-5)

Nous avons évidemment vérifié que cette équation n'est qu'un développement limité du deuxième ordre en Bp et Cp de 1'équation exacte définie par la relation (A5-4). Néanmoins cette expression approchée permet de se représenter plus clairement la configuration du relief de la facette localement paraboloidale au voisinage du point Oi : celle-ci peut en effet être approximée à une facette toroïdale, présentant deux rayons de courbure principaux 2f/cos³io et 2f/ cos io dans deux directions perpendiculaires. L'une de ces deux directions est parallèle à la trace du plan d'incidence des rayons solaires dans le plan de la facette, tandis que l'autre direction est perpendiculaire au plan d'incidence. Cette représentation toroidale du relief de la facette n'est évidemment valable qu'au voisinage du point Oi, c'est-à-dire en pratique pour des facettes de faible ouverture, dont les dimensions sont faibles devant les distances [OiF]

Expression du relief dans le repère (OiXoiYoiZoi)

C'est cette dernière expression du relief de la facette localement paraboloidale que nous utiliserons principalement dans nos codes de calcul; seul le repère (OiXoiYoiZoi) permet en effet de réaliser un découpage simple des facettes réflectrices considérées. Dans ce repère les coordonnées d'un point P de la surface réflectrice sont notées (X_p , Y_p , Z_p). Or B_p et C_p peuvent être facilement liés à Y_p et Z_p à l'aide de la matrice P':

 $B_p = \cos \phi_0 Y_p + \sin \phi_0 Z_p$

 $C_p = -\sin \phi_0 Y_p + \cos \phi_0 Z_p$

Alors l'équation caractéristique de la facette localement paraboloïdale est la même que celle qui est donnée par la relation (A5-4) :

$$X_{p} = f(Y_{p}, Z_{p}) = \frac{1}{\sin^{2}i_{0}} \left[\frac{2f}{\cos i_{0}} - \cos i_{0} \sin i_{0} B_{p} - \sqrt{\frac{4f^{2}}{\cos^{2}i_{0}} - 4f \sin i_{0} B_{p} - \sin^{2}i_{0} C_{p}^{2}} \right]$$
(A5-7)

où B_p et C_p sont donnés par les relations (A5-6).

Par ailleurs, les dérivées partielles de f par rapport à X_p et Z_p , $\frac{\partial f}{\partial X_p}$ (Y_p, Z_p) et $\frac{\partial f}{\partial Z_p}$ (Y_p, Z_p), peuvent s'exprimer en fonction des dérivées partielles par rapport à B_p et C_p :

$$\frac{\partial f}{\partial X_{p}}(Y_{p}, Z_{p}) = \cos \phi_{0} \frac{\partial f}{\partial B_{p}}(B_{p}, C_{p}) - \sin \phi_{0} \frac{\partial f}{\partial C_{p}}(B_{p}, C_{p})$$

$$\frac{\partial f}{\partial Z_{p}}(Y_{p}, Z_{p}) = \sin \phi_{0} \frac{\partial f}{\partial B_{p}}(B_{p}, C_{p}) + \cos \phi_{0} \frac{\partial f}{\partial C_{p}}(B_{p}, C_{p})$$
(A5-8)

avec =
$$\frac{\partial f}{\partial B_{p}}(B_{p},C_{p}) = \frac{1}{tg i_{0}} \left[\frac{1}{\sqrt{\frac{4f^{2}}{\cos^{2} i_{0}}} - 4f \sin i_{0} B_{p} - \sin^{2} i_{0} C^{2}_{p}} \right]$$
(A5-9)

$$\frac{\partial f}{\partial C_p} (B_p, C_p) = \frac{C_p \cos i_0}{2f \sqrt{\frac{4f^2}{\cos^2 i_0} - 4f \sin i_0 B_p - \sin^2 i_0 C_p^2}}$$

L'ensemble des relations (A5-6) à (A5-9) nous permet donc de calculer, en tout point P d'une facette réflectrice, les fonctions $f(Y_p, Z_p), \frac{\partial f}{\partial Y_p}(Y_p, Z_p), \quad \frac{\partial f}{\partial Z_p}(Y_p, Z_p)$ qui sont caractéristiques de son relief localement paraboloïdal. Bien sûr, il faudra avoir préalablement déterminé les angles i_o et u_o, ainsi que l'angle ϕ_o qui est défini par les relations (A5-1).

ANNEXE VI

CALCUL DE LA PERTE EN CONCENTRATION INTRODUITE PAR LES DEFAUTS DE REGLAGE D'UN HELIOSTAT FOCALISANT

On cherche à évaluer le rapport T_r des concentrations réalisées au centre de la tache image d'un héliostat focalisant, lorsque celui-ci est successivement affecté, puis exempt de défauts aléatoires de réglage. Dans le cas où les distributions d'erreurs en azimut et en hauteur sont des lois normales de moyennes nulles et d'écarts types σ_a et σ_h , et lorsque la loi de luminance solaire est celle qui a été donnée par P.José [69], l'expression analytique de T_r est la suivante :

$$T_{r} \approx \frac{2De_{O}\phi}{3\pi\sigma_{a}\sigma_{h}} \int \frac{1}{D^{2}\cos^{2} io} \left[\frac{(C_{22}V+C_{32}W)^{2}}{\sigma_{a}^{2}} + \frac{(C_{23}V+C_{33}W)^{2}}{\sigma_{h}^{2}}\right] dVdW}{8\pi\sigma_{a}\sigma_{h}} D^{2}\cos i_{O}$$
(A6-1)

Et la perte en concentration au centre de la tache image est alors définie par la quantité $1-T_r$. En tenant compte de la relation (IV-43), on peut mettre T_r sous la forme :

 $T_r = a_J I_r + b_J J_r$

avec
$$I_r = \frac{1}{8\pi\sigma_a\sigma_h D^2\cos i_o} \iint_{\mathcal{O}} e^{-\frac{1}{8D^2\cos^2 i_o} \left[\frac{V_e^2}{\sigma_1^2} + \frac{W_e^2}{\sigma_2^2}\right]} dV_e dW_e$$

$$(A6-2)$$

$$\left[\left[\frac{V_e^2}{\sigma_1^2} + \frac{W_e^2}{\sigma_2^2} \right] + \frac{V_e^2}{\sigma_2^2} + \frac{W_e^2}{\sigma_2^2} \right]$$

et
$$J_r = -\frac{1}{8\pi\sigma_a\sigma_h D^2 \cos i_o} \iint \sqrt{1 - \frac{Ve^2 + We^2}{D^2 \epsilon_o^2}} e^{-\frac{1}{8D^2 \cos^2 i_o} \left[\frac{Ve}{\sigma_1^2} + \frac{We}{\sigma_2^2}\right]} dv_e dw_e$$

 $\oint 2D\epsilon_o$

où σ_1 et σ_2 sont définis par les relations (IV-41). Par ailleurs, on sait que $\sigma_1 \sigma_2 \cos i_0 = \sigma_a \sigma_h$ (relation (IV-44)).

Calcul de Ir

On pose tout d'abord : $V = -\frac{V_e}{2\sqrt{2}D \cos i_o}$ et $W = -\frac{W_e}{2\sqrt{2}D \cos i_o}$

Alors I_r peut s'écrire :

$$I_{r} = \frac{\cos i_{0}}{\pi \sigma_{a} \sigma_{h}} \iint e^{-\left[\frac{v^{2}}{\sigma_{1}^{2}} + \frac{w^{2}}{\sigma_{2}^{2}}\right]} dvdw$$
$$\oint \frac{\epsilon_{0}}{\sqrt{2} \cos i_{0}}$$

On procède ensuite à un deuxième changement de variables, qui consiste à passer en coordonnées polaires :

 $V = R\cos \phi;$ $W = R\sin \phi \text{ et } dVdW = RdRd\phi$

et l'expression de I_r devient :

$$I_{r} = \frac{4 \cos i_{o}}{\pi \sigma_{a} \sigma_{h}} \int_{0}^{\frac{\varepsilon_{o}}{2} \sqrt{2} \cos i_{o}} \left[\int_{0}^{\pi/2} e^{-R^{2} \left[\frac{\cos^{2} \phi}{\sigma_{1}^{2}} + \frac{\sin^{2} \phi}{\sigma_{2}^{2}} \right]_{d\phi} \right] RdR$$

ce qui s'écrit également :

$$I_{r} = \frac{4 \cos i_{o}}{\pi \sigma_{a} \sigma_{h}} \int_{0}^{\frac{r}{2\sqrt{2}\cos i_{o}}} \left[\frac{R^{2} \left[\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}}\right]}{R e^{-\frac{R^{2}}{2} \left[\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}}\right]} \left[\int_{0}^{\frac{\pi}{2}} e^{-\frac{R^{2}}{2} \left[\frac{1}{\sigma_{1}^{2}} - \frac{1}{\sigma_{2}^{2}}\right]\cos 2\phi} d\phi \right] dR$$

Alors, sachant que $\frac{1}{\pi} \int_{0}^{\pi} e^{t \cos \phi} d\phi = I_{0}(t)$ [1'], où $I_{0}(t)$ est la

fonction de Bessel modifiée d'ordre 0, on peut mettre I_r sous sa forme définitive :

$$I_{r} = \frac{2 \cos i_{0}}{\sigma_{a} \sigma_{h}} \int_{0}^{\frac{\varepsilon_{0}}{16 \cos^{2} i_{0}}} e^{-t \left[\frac{1}{\sigma_{1}^{z}} + \frac{1}{\sigma_{2}^{z}}\right]} I_{0} \left[\left[\frac{1}{\sigma_{2}^{z}} - \frac{1}{\sigma_{1}^{z}} \right]^{t} \right] dt \quad (A6-3)$$

Dans le cas particulier où $\sigma_1 = \sigma_2 = \sigma$, il est possible d'exprimer I_r analytiquement; on trouve alors que :

$$I_r = 1 - e^{-\frac{\epsilon_0^2}{8 \sigma_a \sigma_h \cos i_0}}$$
 (A6-4)

Lorsque σ_1 et σ_2 sont différents, ce qui est le cas le plus fréquent, on utilise un développement polynomial de $I_o(t)$ sur l'intervalle [0,a[[l'] :

$$I_{o}(t) = \sum_{\substack{i=1\\i=1}}^{6} a_{2i} \left[\frac{t}{a}\right]^{2i}$$
(A6-5)

où a = 3,75 , et les coefficients a_{2i} sont donnés dans [l']. On obtient alors une expression approchée de I_r :

- 470 -

$$I_{r} = \frac{2 \sigma_{a} \sigma_{h}}{(\sigma_{1}^{2} + \sigma_{2}^{2}) \cos i_{o}} \left[C_{o} - \left[\sum_{i=0}^{12} C_{i} \left[\frac{\epsilon_{o}^{2} (\sigma_{1}^{2} - \sigma_{2}^{2})}{16 \sigma_{a}^{2} \sigma_{h}^{2}} \right]^{i} \right] \exp - \frac{\epsilon_{o}^{2} (\sigma_{1}^{2} + \sigma_{2}^{2})}{16 \sigma_{a}^{2} \sigma_{h}^{2}} \right] (A6-6)$$

pour laquelle les coefficients C_i sont définis par les relations de récurrence :

$$\begin{bmatrix} c_{12} = \frac{a_{12}}{a^{12}} \\ c_{2i-1} = 2i \frac{\sigma_1^2 - \sigma_2^2}{\sigma_1^2 + \sigma_2^2} c_{2i} \\ c_{2i-2} = \frac{a_{2i-2}}{a^{21-2}} + 2i (2i-1) \frac{\sigma_1^2 - \sigma_2^2}{\sigma_1^2 + \sigma_2^2} c_{2i} \end{bmatrix}$$

$$1 \le i \le 6$$

En pratique, ce sont ces dernières relations que l'on utilisera pour le calcul de I_r.

Calcul de Jr

En effectuant les mêmes changements de variables que dans I_r , on met J_r sous la forme : $\frac{\epsilon_0^2}{[16 \cos^2 i_0]}$

$$J_{r} = \frac{2 \cos i_{0}}{\sigma_{a} \sigma_{h}} \int_{0}^{16 \cos^{2} i_{0}} \sqrt{1 - \frac{16 \cos^{2} i_{0}}{\epsilon_{0}^{2}}} t e^{-t \left[\frac{1}{\sigma_{1}^{z}} + \frac{1}{\sigma_{2}^{z}}\right]} I_{0} \left[\left[\frac{1}{\sigma_{2}^{z}} - \frac{1}{\sigma_{1}^{z}}\right] t \right] dt$$

L'utilisation du développement polynomial de $I_0(t)$ donné par la relation (A6-5) ne nous sera cette fois-ci d'aucun secours, et il faut se résoudre à effectuer une intégration numérique de J_r , que l'on réécrit :

$$J_{r} = \frac{\epsilon_{0}^{2}}{8 \cos i_{0} \sigma_{a} \sigma_{h}} \int_{0}^{1} \sqrt{1-t} f(t) dt$$
(A6-7)
avec $f(t) = e^{-\frac{t(\sigma_{1}^{2}+\sigma_{2}^{2})\epsilon_{0}^{2}}{16 \sigma_{a}^{2} \sigma_{h}^{2}} I_{0} \left[\frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{16 \sigma_{a}^{2} \sigma_{h}^{2}} \epsilon_{0}^{2}t\right]$

Nous calculerons J_r par la méthode de Simpson; si l'on note g(t) la fonction $\sqrt{1-t}$ f(t), on obtient donc, par la formule classique [l'] :

$$J_{r} = \int_{0}^{1} g(t) dt = \frac{h}{3} \left[g(x_{0}) + g(x_{2n}) + 4 \left[g(x_{1}) + g(x_{3}) + \ldots + g(x_{2n-1}) \right] \right]$$

+2 $[g(x_2)+g(x_4)+...+g(x_{2n-2})]$ + Rn (A6-8)

avec $x_0=0$; $x_{2n}=1$; $h = \frac{1}{2n}$ et $x_{1+1}=x_1+h$, quel que soit i compris entre 0 et 2n-1.

Par ailleurs, on sait que $|Rn| = \left|\frac{n}{90} h^5 g^{(4)}(\epsilon)\right|$ avec $0 \le \epsilon \le 1$ [1']. Un problème se pose lorsque σ_a ou σ_h deviennent très petits; dans ce cas en effet, le terme exponentiel de la fonction f(t) devient prépondérant et impose une décroissance très rapide de g(t). On pose donc :

at =
$$\frac{16 \sigma_a^2 \sigma_b^2}{(\sigma_1^2 + \sigma_2^2) \epsilon_0^2}$$
 (A6-9)

Et lorsque at \leq 1, on procède séparément à l'intégration de la fonction g(t) sur les deux segments [0, at] et [at, 1]; en effet :

 $\int_{0}^{1} g(t)dt = \int_{0}^{1} g(t)dt + \int_{0}^{1} g(t)dt$

et l'on utilise à chaque fois la méthode de Simpson sur ces deux intervalles. La précision de l'intégration numérique est donnée par la valeur maximale du terme |Rn|, qui fait intervenir la dérivée quatrième de la fonction g(t). Le terme prépondérant de celle-ci est en fait $\left[\frac{1}{at}\right]^4$. Alors :

$$|\mathbf{Rn}| \leq \frac{\mathbf{n}}{90} \begin{bmatrix} \mathbf{1} \\ \mathbf{2n} \end{bmatrix}^5 \begin{bmatrix} \mathbf{1} \\ \mathbf{at} \end{bmatrix}^4$$

et, lorsque l'on choisit :

$$n = E\left[\frac{0,64}{at}\right]$$

l'erreur sur la valeur de J_r reste toujours inférieure à 0,2 ; on se servira donc systématiquement de cette dernière relation pour déterminer le nombre minimum de points sur lesquels devra porter l'intégration.

(A6 - 10)

Nous donnons pour conclure un organigramme très simplifié du sous-programme de calcul qui détermine les valeurs de T_r en fonction des écarts types σ_a et σ_h , et des coefficients (C_{ij}) de la matrice $P_{2 \text{ Rro} \to \text{Ro}}$, caractéristique de la géométrie héliostat-point cible. Ce sous-programme est disponible pour tout calcul de perte en concentration induite par des défauts de réglage suivant des lois normales indépendantes en azimut et en hauteur.

REFERENCES

[1'] M.ABRAMOWITZ, I.STEGUN "Handbook of mathematical functions". Dover Publications, INC., New York (Sections 9 et 25). REFERENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIQUES

- [1] C.ROYERE "Les applications du four solaire de 1000 KW du CNRS à Odeillo". Entropie nº 97, pp.147-160, 1981
- [2] C.HENRY LA BLANCHETAIS "Perspectives sur la réalisation de fours solaires à vocation industrielle". Entropie nº 107-108, pp.28-61, 1982
- [2] V.NEERANARTVONG "Etude d'un concentrateur solaire à simple réflexion pour utilisation en génie thermique ou chimique". Thèse de Docteur-Ingénieur, INP Toulouse, 1983
- [4] ACTION SOLAIRE, numéro de Mars-Avril 1985
- [5] G.ARNAUD, G.FLAMANT, G.OLALDE, J.F.ROBERT "Les fours solaires de recherche du Laboratoire d'Energétique Solaire d'Odeillo". Entropie nº 97, pp.139-146, 1981
- [6] B.AUTHIER "Réflexions sur les collecteurs solaires à températures élevées (260-1000°C)". Thèse de Docteur-ès-Sciences, Université d'Aix-Marseille, 1982
- [7] G.PERI "Programme THEK de centrales solaires à collecteurs distribués". Entropie nº 85, pp.43-47, 1979
- [8] M.W.FROHARDT "Heliostat field subsystem description". Technical Report, pp.164-179, SSPS Central Receiver System (CRS) Midterm Workshop. Tabernas, April 19-20, 1983.
- [9] J.J.FAURE, J.GRETZ, W.PALZ, A.STRUB "EURELIOS, centrale hélioélectrique à tour de 1 MWe". Colloques Internationaux du CNRS. nº 306. Systèmes Solaires Thermodynamiques, pp.35-38, CNRS, 1980
- [10] M.MATSUI, Y.TOYOGUCHI "Solar thermal power generation pilot plant at Nio, Japan". Colloques Internationaux du CNRS n^o 306. Systèmes Solaires Thermodynamiques, pp.83-89, CNRS, 1980.
- [11] A.COLLON, A.LECLERC "Le champ d'héliostats de THEMIS". Entropie nº 103, pp.10-20, 1982
- [12] D.TEPLYAKOV, R.APARISI "The SES-5 experimental solar electric station in light of the USSR's energy program". Geliotekhnika, vol.21, n^o 5, pp. 28-32, 1985
- [13] C.MOELLER, T.BRUMLEVE, C.GROSSKREUTZ, L.SEAMONS "Central receiver test facility, Albuquerque, New Mexico", Solar Energy, vol.25, pp.291-302, 1980
- [14] C.MAVIS "Barstow heliostat experiences november 1981february 1983". Technical report, pp.393-416, SSPS Central Receiver System (CRS) Midterm Workshop. Tabernas, April 19-20, 1983.

- [15] R.M.MEUNIER "Caractéristiques et objectifs des fours solaires du Laboratoire Central de l'Armement". Revue Internationale des Hautes Températures et Réfractaires, tome 10, pp.297-302, 1973
- [16] F.TROMBE "L'utilisation de l'énergie solaire : état actuel et perspectives d'avenir". Journal des recherches du CNRS, nº 25, pp.19-21, décembre 1953
- [17] F.TROMBE, A.LE PHAT VINH "Thousand KW solar furnace, built by the National Center of Scientific Research, in Odeillo (France)". Solar Energy, vol.15, pp.57-61, 1973
- [18] T.SAKURAI, O.KAMADA, K.SHISHIDO, K.INAGAKI "Construction of a large solar furnace". Solar Energy, vol.9, p.121, 1964
- [19] J.DAVIES, E.COTTON "Design of the quartermaster solar furnace". Solar Energy, vol.1, n^o 2-3, pp.16-22, 1957
- [20] W.WELFORD, R.WINSTON "The optics of non imaging concentrators". Academic Press, 1978.
- [21] T.BRUMLEVE, J.GIBSON "Measurement challenges in solar central receiver system". 7th Energy Technology Conference.
- [22] F.TROMBE, A. LE PHAT VINH "Mesure de l'énergie au foyer des systèmes de concentration". Cahiers de l'AFEDES nº 3, pp.78~80, 1971
- [23] V.GRILIKHES "Methods of quality control for solar energy concentrators". Geliotekhnika, vol.8, n^o 4, pp.3-15, 1972
 - [24] "Handbook of Optics", Mac Graw Hill, 1978
 - [25] A. LE PHAT VINH, F.TROMBE "Calcul de la concentration de l'énergie solaire dans le cadre de l'optique géométrique". Cahiers de l'AFEDES nº 3, pp.19-26, 1971
 - [26] N.HIESTER, T.TIETZ, R. DE LARUE "Economic factors in furnace design". Solar Energy, vol.1, nº 2-3, pp.28-40, 1957
 - [27] F.TROMBE, A. LE PHAT VINH "Conclusions générales" aux Cahiers de l'AFEDES nº 3, pp.103-105, 1971
 - [28] F.TROMBE, A. LE PHAT VINH "La réflexion convergente". Cahiers de l'AFEDES nº 3, pp.66-70, 1971
 - [29] D.TEPLYAKOV, R.APARISI "Solar radiation concentrator for uniform irradiation of flat energy receivers and converters". Geliotekhnika, vol.14, n^o 5, pp.32-40, 1978
 - [30] G.LEMPERLE "Effect of sunshape on flux distribution and intercept factor". Technical Report, pp.181-195, SSPS Central Receiver System (CRS) Midterm Workshop. Tabernas, April 19-20, 1983
 - [31] D.BARGUES "Cours de systèmes optroniques". Ecole Supérieure d'Optique, 1983

- 478 -

- [32] D.GRETHER, J.NELSON, M.WAHLIG "Measurement of circumsolar radiation". Lawrence Berkeley Laboratory, University of California. Berkeley, California 94720
- [33] C.VITTITOE, F.BIGGS "Six-gaussian representation of the angular-brightness distribution for solar radiation". Solar Energy, vol.27, n^o 6, pp.469-490, 1981
- [34] M.CAGNET "Cours de formation des images". Ecole Supérieure d'Optique, 1982
- [35] R.PETTIT "Characterization of the reflected beam profile of solar mirror materials". Solar Energy, vol.19, pp.733-741, 1977
- [36] G.LENSCH "Reflectivity measurements". Technical Report, pp.227-243, SSPS Central Receiver System (CRS) Midterm Workshop. Tabernas, April 19-20, 1983
- [37] J.AVELLANER "Optical characterization of the facets of a heliostat". Revue de Physique Appliquée, vol.15, pp.169-173, 1980
- [38] V.BUROLLA, W.DELAMETER "Testing and evaluation of second generation heliostat mirror modules". SAND 81-8263, January 1982
- [39] S.AZIMOV, V.BATURIN, B.KALANDAROV, I.PIRMATOV, S.SAIDUMAROV "An investigation of strain molding of reflector surfaces". Geliotekhnika, vol.17, n^o 5, pp.31-35, 1981
- [40] E.TVERYANOVICH, V.MADAEV "Test on paraboloidal concentrators using the Leonov aberrograph". Geliotekhnika, vol.10, n^o3, pp.28-33, 1974
- [41] B.BUTLER, R.PETTIT "Optical evaluation techniques for reflecting solar concentrators". SPIE, vol.114, Optics Applied to Solar Energy conversion, pp.43-49, 1977
- [42] D.KING "Beam quality and tracking accuracy evaluation of second generation and Barstow production heliostats". SAND 82-0181, August 1982
- [43] E.THALHAMMER "Heliostat Beam Characterization System-update". Proceedings of Instrument Society of America. ISA 79, National Conference and Exhibit, Chicago, Il.,22 Oct.1979
- [44] D.KING, D.ARVIZU "Heliostat characterization at the Central Receiver Test Facility". Transactions of the ASME, vol.103, pp.82-88, 1981
- [45] B.BONDUELLE "Etude statistique des dépointages des héliostats THEMIS" Rapport GEST Oll, Décembre 1984
- [46] E.IGEL, R.HUGUES "Optical analysis of solar facility heliostats". Solar Energy, vol.22, pp.283-295, 1979

- [47] F.HENAULT "Contribution à l'étude et à l'évaluation des méthodes de réglage des surfaces réfléchissantes utilisées pour la concentration ponctuelle du rayonnement solaire (simple et double réflexion)". Rapport de stage Février-Mars 1983, Ecole Supérieure d'Optique.
- [48] "Testing of the prototype heliostats for the solar thermal central receiver pilot plant". SAND 81-8008, April 1981
- [49] Y.DENAYROLLES, C.MERSIER "Mesure des performances optiques de la centrale THEMIS". HP/136/82-16. Direction des études et recherches, EDF, 1982
- [50] F.CABANNES, A. LE PHAT VINH "Calcul de la répartition de l'énergie solaire réfléchie par un miroir parabolique". Journal de Physique et Le Radium, tome 15, pp.817-821, décembre 1958
- [51] A.LE PHAT VINH "Contribution à l'étude de la répartition de l'énergie solaire concentrée au foyer d'un miroir parabolique". Colloques Internationaux du CNRS. "Applications thermiques de l'énergie solaire dans le domaine de la recherche et de l'industrie", pp.145-156, CNRS, 1958
- [52] V.BAUM, R.APARISI, D.TEPLYAKOV "Sur l'évaluation objective de la précision des systèmes optiques d'appareils solaires". Colloques Internationaux du CNRS. "Applications thermiques de l'énergie solaire dans le domaine de la recherche et de l'industrie", pp.163-174, CNRS, 1958
- [53] V.GRILIKHES, R.ZAKHIDOV "Derivation of the equation of irradiance distribution in the focal plane of paraboloidal concentrators". Geliotekhnika, vol.7, nº 4, pp.9-13, 1971.
- [54] O.ALCAYAGA "Contribution à l'étude de la répartition de la densité de flux énergétique dans l'espace focal d'un système concentrateur de rayonnement solaire". Thèse de 3ème cycle, Université de Poitiers, 1977
- [55] I.RUBANOVICH "Objective estimation of the accuracy of the reflecting surfaces of the paraboloidal concentrators of high-temperature solar devices". Geliotekhnika, vol.3, n^o 6, pp.26-33, 1967
- [56] V.GRILIKHES "Algorithm for the statistical solution of the problem of radiant-flux distribution in the receivers of solar devices equiped with paraboloidal concentrators". Geliotekhnika, vol.2, n^o 4, pp.25-34, 1966
- [57] P.LEARY, J.HANKINS "A user's guide for MIRVAL : a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants". SAND 77-8280, 1979
- [58] G.UMAROV, R.ZAKHIDOV, A.WAINER "Illuminance distribution in a reflected beam". Geliotekhnika, vol.9, n^o 5, pp.31-38, 1973

- [59] F.BIGGS, C.VITTITOE "The HELIOS model for the optical behavior of reflecting solar concentrators".SAND 76-0347, 1979.
- [60] R.ZAKHIDOV, A.WAINER "Distribution of radiation produced by a paraboloidal concentrator". Geliotekhnika, vol.10, pp.34-40, 1974.
- [61] R.PETTIT, C.VITTITOE, F.BIGGS "Simplified calculational procedure for determining the amount of intercepted sunlight in an imaging solar concentrator". Journal of Solar Energy Engineering, vol.105, pp.101-107, 1983.
- [62] F.LIPPS "Four different views of the heliostat flux density integral". Solar Energy, vol.18, pp.555-560, 1976.
- [63] M.WALZEL, F.LIPPS, L.VANT-HULL "A solar flux density calculation for a solar tower concentrator using a two dimensional Hermite fonction expansion". Solar Energy, vol.19, pp.239-253, 1977.
- [64] P.COURREGES "Note sur l'évaluation du flux réfléchi par un miroir focalisant". Rapport THEM 78-13, 1978.
- [65] J.J.BEZIAN "Calcul de flux concentrés avec soleil à luminance variable". Rapport GEST 020, décembre 1984.
- [66] A.LE PHAT VINH, F.TROMBE "Caractéristiques du soleil, source de rayonnement". Cahiers de l'AFEDES Nº 3, pp.15-18, 1971.
- [67] R.WALRAVEN "Calculating the position of the sun". Solar Energy, vol.20, pp.393-397, 1978.
- [68] O.KAMADA "Theoretical concentration and attainable temperature in solar furnaces". Solar Energy, vol.9, nº 1, pp.39-47, 1965.
- [69] P.JOSE "The flux through the focal spot of a solar furnace". Solar Energy, vol.1, Nº 4, pp.19-22, 1957.
- [70] J.HILLAIRET "Themis. La centrale solaire". Entropie Nº 103, pp.6-10,1982.
- [71] B.BONDUELLE "Calculs de position du soleil : analyse du contrôle-commande de THEMIS". Rapport GEST 034, avril 1986.
- [72] B.RIVOIRE "Caractéristiques géométriques du champ d'héliostats de THEMIS". Rapport GEST 001, décembre 1983.
- [73] "Notice d'exploitation et d'entretien des groupes d'héliostats CETHEL de la centrale THEMIS". Nº 4100, CETHEL 1982.
- [74] R.ZAKHIDOV, A.KHODZHAEV " Energy computation of concentrating capability of paraboloidal facets". Geliotekhnika, vol.12, nº 5, pp.26-30, 1976.
- [75] R.ZAKHIDOV, A.KHODZHAEV " Concentrating capability of spherical facets". Geliotekhnika, vol.12, nº 6, pp.35-37,1976.

- [76] M.IZYGON, J.J.BEZIAN, F.HENAULT "Modélisation des flux réfléchis par un champ d'héliostats . Comparaison de divers modèles". Séminaire Héliothermie, Valbonne, 16-19 Septembre 1986.
- [77] D.TEPLYAKOV "Aberration theory of the optical characteristics of paraboloidal concentrators". Geliotekhnika, vol.7, nº 5, pp.34-42, 1971.
- [78] F.TROMBE, A.LE PHAT VINH "La réflexion plane des rayons solaires". Cahiers de l'AFEDES nº 3, pp.63-65, 1971.
- [79] V.BARANOV "Structure of beam reflected by heliostat ". Geliotekhnika, vol.13, nº 6, pp.3-10, 1977.
- [80] J.J.BEZIAN "Mesure des flux solaires et des débits à THE-MIS". Séminaire Héliothermie, Valbonne, 16-19 Septembre 1986.
- [81] M.A.BERGEOT. Rapport interne IMP, CNRS, aout 1986.
- [82] B.BONDUELLE "Réflectivité annuelle du champ d'héliostats à THEMIS". Rapport GEST 030, octobre 1985.
- [83] J.J.BEZIAN "Facteur de réflexion d'héliostats au four solaire d'Odeillo". Note de travail GEST 16-85, août 1985.
- [84] F.TROMBE, A.LE PHAT VINH "Les surfaces réfléchissantes, leurs supports et leurs protections". Cahiers de l'AFEDES nº 3, pp.59-62, 1971
- [85] A.SIMON "The loss of energy by absorption and reflection in the heliostat and parabolic condenser of a solar furnace". Solar Energy, vol.2, nº 2, pp.30-33, 1958.
- [86] J.J.BEZIAN "Atténuation atmosphérique dans le trajet héliostat-chaudière". Rapport GEST 029, septembre 1985.
- [87] F.PIOTROWSKI "Contribution à l'optimisation des miroirs du concentrateur parabolique du four solaire d'Odeillo". Rapport de stage avril-juin 1986, Ecole Supérieure d'Optique.

TABLE DES MATIERES

TABLE DES MATIERES

AVANT PROPOS

INTRODUCTION

UTILISATIONS DE L'ENERGIE SOLAIRE CONCENTREE

UNE CLASSIFICATION POSSIBLE DES SYSTEMES COLLECTEURS D'ENERGIE SOLAIRE

PRESENTATION GENERALE.

1) INTRODUCTION

CHAPITRE I ETUDE BIBLIOGRAPHIQUE

<u>2)</u>	RINCIPES ELEMENTAIRES DE LA CONCENTRATION	28
	2.1) Définitions des facteurs de concentration	28
	2.2) Concentration maximale théorique	30
	2.3) Systèmes non imageants	33
<u>3)</u>	AUSES D'ELARGISSEMENT DE LA TACHE-IMAGE SOLAIRE	35
	<u>3.1) Le soleil et la géométrie du système collec-</u> <u>teur</u>	36
	3.1.1) Le relief du soleil	36
	3.1.2) Les aberrations optiques	39
	<u>3.2) Les défauts spécifiques des installations</u> <u>solaires</u> 4	1 0
	3.2.1) Défauts microscopiques des facettes réflec- trices. 4	12
	3.2.2) Défauts de surface des facettes réflectri- ces 4	16
	3.2.3) Défauts de pointage d'héliostats 4	19
	3.2.4) Défauts de réglage des facettes réflectri- ces 5	5 2
	3.2.4.1) Stratégies de réglage 5 3.2.4.2) Quelques méthodes de réglage classi- ques 5	52 54

5

9

20

27

4) LE CALCUL DES ECLAIREMENTS SOLAIRES	60
4.1) La méthode des ellipses	60
4.2) La méthode d'Aparisi	64
4.3) Les méthodes par comptage de rayons	69
4.4) Les méthodes par convolution	72
4.4.1) Le soleil fictif d'Umarov, Zakhido Wainer	ovet 72
4.4.2) Le soleil fictif d'Arnaud	80
4.4.3) La vue en trou d'épingle de Lipps	81
4.4.3.1) Principe 4.4.3.2) L'approximation de Courrège	81. 85 85
5) CONCLUSION	88

CHAPITRE II

MODELISATION DES FACTEURS DE CONCENTRATION ET DES REPARTITIONS DE LUMINANCE OBSERVABLES SUR LES SURFACES REFLECTRICES

<u>1)</u>	INTRODUCTION	93
<u>2)</u>	PRINCIPE DU CALCUL	95
3)	CARACTERISTIQUES DU SOLEIL, SOURCE DE RAYONNEMENT	102
	3.1) Position du soleil dans le ciel	103
	<u>3.2) Variations de luminance à l'intérieur du disque</u> solaire	105
<u>4)</u>	GEOMETRIE DES INSTALLATIONS ETUDIEES	108
	4.1) La centrale solaire expérimentale THEMIS	108
	4.1.1) Vue d'ensemble	108
	4.1.2) L'héliostat CETHEL III bis : description-rel des modules.	ief 112
	4.2) Le four solaire de 1000 kW d'Odeillo	121
	4.2.1) Description d'ensemble	121
	4.2.2) Le champ d'héliostats	126
	4.2.3) Le concentrateur paraboloïdal	129
	4.2.4) Les facettes déformées sous contrainte méca- nique	133

- 487 -	
5) DEFINITION DES REPERES ET CALCUL DES MATRICES DE PASSAGE	136
5]) Expression de deux matricos de massare	100
5.1) Con des bilients h. C. 11	130
5.2) Cas des nellostats rocalisants	140
5.2.1) Choix des repères	140
5.2.2) Influence de la position du centre de rotat de l'héliostat	ion 145
5.2.3) Matrice de passage de Rri dans R'	149
5.2.4) Matrice de passage de Rri dans Ro	149
5.2.5) Matrice de passage de Rri dans Roi	150
5.2.5.1) Héliostat réglé sur son axe 5.2.5.2) Héliostat réglé en dehors de son axe	150 151
5.3) Cas des héliostats plans	152
5.3.1) Choix des repères	153
5.3.2) Matrices de passage	154
5.4) Cas du concentrateur paraboloidal	156
5.4.1) Choix des repères	156
5.4.2) Matrices de passage	15 9
6) INTRODUCTION DES DEFAUTS DE REGLAGE	160
7) CONTRIBUTION D'ECLAIREMENT DU POINT P AU POINT M'	164
7.1) Calcul du vecteur PM'	164
7.2) Calcul de la normale $\overline{N_p}$ à la surface réflectri-	
	165
7.3) Calcul du vecteur Rpo	166
7.4) Contribution d'éclairement en M'	166
8) VISUALISATION DES DISTRIBUTIONS DE LUMINANCE	167
9) ORGANIGRAMMES	171
10) PREMIERS RESULTATS : LUMINANCE OBSERVABLE SUR UN PARABOLOIDE DE REVOLUTION	172
11) COMPARAISON AVEC D'AUTRES CODES DE CALCUL	179
12) CONCLUSION	183

CHAPITRE III EXPRESSION SIMPLIFIEE DES REPARTITIONS DE LUMINANCE DANS LE CADRE D'UNE APPROXIMATION DU PREMIER ORDRE

<u>1)</u>	INTRODUCTION	189
<u>2)</u>	LES TERMES DE L'APPROXIMATION	189
3)	EXPRESSION DU VECTEUR PM'	191
<u>4)</u>	EXPRESSION DU VECTEUR Rpo	194
	4.1) Composition des matrices au premier ordre	195
	4.2) Cas d'un héliostat focalisant	197
	4.2.1) Héliostat réglé sur son axe	197
	4.2.2) Héliostat réglé en dehors de son axe	205
	4.3) Cas d'un héliostat plan	207
	4.4) Cas d'un concentrateur fixe	208
<u>5)</u>	ALLURE DES COURBES ISO-LUMINANCE EN FONCTION DU TYPE DES FACETTES	210
	5.1) Cas général : facettes toroidales	211
	5.2) Facettes planes	218
	5.2.1) Cas idéal	218
	5.2.2) Cas d'une facette d'héliostat plan présen- tant un défaut de réglage	219
	5.2.3) Méthode d'estimation de l'erreur de ré- glage	220
	5.3) Facettes cylindriques	223
	5.3.l) Cas idéal	223
	5.3.2) Cas d'un module d'héliostat CETHEL III bis présentant un défaut de réglage	226
	5.3.3) Méthode d'estimation de l'erreur de ré- glage	228
	5.3.4) Un critère de qualité pour l'héliostat CETH III bis	iel 234
	5.4) Facettes sphériques	236
	5.5) Facettes localement paraboloidales	246
6)	CONCLUSION	240

- 489 -

CHAPITRE IV

REDUCTION DE L'INTEGRALE DE DENSITE DE FLUX SOUS FORME DE PRODUITS DE CONVOLUTION

1) INTRODUCTION	253
2) EXPRESSION DE LA DENSITE DE FLUX DANS LE CADRE DE L'APPROXIMATION DU PREMIER ORDRE	253
2.1) Formulation intégrale sur le miroir	254
2.2) Passage à la vue en trou d'épingle	257
2.3) Loi de luminance solaire projetée dans le plan récepteur	262
2.4) Allure générale des réponses impulsionnelles	265
2.5) Application : flux renvoyé par un héliostat plan dans un plan normal aux rayons réfléchis	268
2.6) Normalisation des termes des produits de convo- lution	273
3) INTRODUCTION DE DEFAUTS ALEATOIRES DE REGLAGE	277
3.1) Cas général	278
3.2) Loi normale elliptique	281
3.3) Etude sommaire du cône d'erreur	281
4) APPLICATION AUX HELIOSTATS	285
4.1) Cas des héliostats focalisants	285
4.1.1) Expression simplifiée de la densité de flux	285
4.1.2) Calcul de la perte en concentration au cent Une tolérance sur les erreurs de réglage	re. 287
4.2) Cas des héliostats plans	292
5) FORMULATION GENERALE DE L'INTEGRALE DE DENSITE DE FLUX	294
5.1) Défauts microscopiques et défauts locaux de sur- face	294
5.2) Défauts de pointage d'héliostats	295
5.3) Réponse impulsionnelle effective d'un miroir	297
6) PROPOSITIONS POUR UN MODELE PREVISIONNEL DES ECLAIREMENTS SOLAIRES.	300
7) CONCLUSION	304

CHAPITRE V

DETERMINATION EXPERIMENTALE DE QUELQUES PARAMETRES D'ERREUR

<u>1)</u>	INTRODUCT	ION	309
<u>2)</u>	ETUDE DES LISANTS C	DEFAUTS DE REGLAGE DES HELIOSTATS FOCA- ETHEL III bis	310
	<u>2.1)</u>	Méthode de tir sur la lune	310
	2.2)	Exploitation des clichés	314
	2.3)	Validation sur cible active	320
	2.4)	Interprétation des résultats	327
	2.5)	Conclusion. Optimisation d'héliostats focali- sants	339
<u>3)</u>	ETUDE DES DE 1000 K	DEFAUTS DE REGLAGE DES HELIOSTATS PLANS DU FO W D'ODEILLO	<u>UR</u> 341
	<u>3.1)</u>	Méthode utilisée	341
- 10 ⁻	3.2)	Exploitation des clichés	346
	<u>3.3)</u>	Mesure des facteurs de réflexion apparents d'une des facteurs de réflexion apparents d'une de la service de la ser	<u>un</u> 354
	3.4)	Interprétation des résultats	357
		3.4.1) Influence de l'angle d'incidence sur le coefficient de réflexion	∍ 357
		3.4.2) Effets d'ombre et de blocage	360
		3.4.3) Transmission atmosphérique	363
		3.4.4) Influence du relief effectif des facets réflectrices	ces 364
<u>4)</u>	ETUDE DES CENTRATEUR	REPONSES IMPULSIONNELLES DES FACETTES DU CON- R DU FOUR DE 1000 KW D'ODEILLO	372
	4.1)	Description d'une méthode de caractérisation des facettes	373
	<u>4.2)</u>	Détermination des normales à la surface réflec trice	<u>-</u> 377
	4.3)	Calcul des réponses impulsionnelles des facet- tes	384
	4.4)	Une méthode d'optimisation des facettes défor- mées sous contrainte mécanique	395
	88	4.4.1) Montages pratigues	395

- 490 -

4.4.2) Procédure d'optimisation	405
4.5) Interprétation des résultats. Optimisation de concentrateurs	409
5) CONCLUSION	418
CONCLUSION GENERALE	421
ANNEXES	427
ANNEXE I Présentation du laboratoire d'accueil	429
ANNEXE II Calcul de la position du soleil	437
ANNEXE III Dimensions et géométrie de l'héliostat CETHEL III bis	445
<u>ANNEXE IV</u> Modélisation du concentrateur du four so- laire de 1000 kW d'Odeillo	451
<u>ANNEXE V</u> Expression du relief d'une facette de concen- trateur localement paraboloidale	463
<u>ANNEXE VI</u> Calcul de la perte en concentration intro- duite par les défauts de réglage d'un hé- liostat focalisant	469

REFERENCES BIBLIOGRAPHIQUES

475

TABLE DES ILLUSTRATIONS

FIGURES

fig	1:	Schéma de principe d'un concentrateur THEK.	13
fig	2 :	Schéma de principe d'une centrale à tour.	13
fig	3 :	Principe de la double réflexion : un champ d'héliostats plans (H) renvoie le rayonnement solaire incident sur un concentrateur (C) qui le focalise au point F.	15
fig	4:	Le concentrateur PERICLES : l'ensemble OICH est mobile le long d'un rail et permet de situer la chaudière au point chaud de l'installation en per- manence.	15
fig	5:	Principe d'un concentrateur CPC. La génératrice du concentrateur est la section d'une parabole de foyer F et d'axe Fx.	22
fig	6:	Mesures de densité de flux (A) et mesures de lumi- nance (B).	22
fig	I-1	: Surfaces d'entrée et image S et S'.	29
fig	I-2	: Calcul de l'éclairement maximal en M'.	29
fig	I-3	: Températures d'équilibre de corps noir en fonction de la concentration (et difficultés de réalisation).	32
fig	I-4	: La réflexion convergente du rayonnement solaire.	34
fig	1-5	: Les différents reliefs proposés par Aparisi et Teplyakov [29] pour un concentrateur de four solaire. La surface support des facettes réflectrices peut être plane (b), parabolique (a), ou sphérique (c,d,e).	34
fig	I –6	: Allure générale des répartitions de densité de flux théorique (a) et expérimentale (b) pour un même système concentrateur.	36
fig	I -7	: Origine du rayonnement circumsolaire.	37
fig	8– I	: Un exemple de profil solaire enregistré à Albuquer- que (Nouveau Mexique) en 1978, avec le télescope circumsolaire du LBL. Le taux circumsolaire T vaut	
		70%.	37
fig	I-9	: Cas d'une facette sphérique mise en place sur un concentrateur de four solaire.	41
Eig	I-10	: Astigmatisme et courbure de champ d'un miroir sphé- rique. La distance focale O_iF de la facette est notée f.	41

fig I-ll : Les défauts spécifiques des installations solaires. 43 fig I-12 : Le réflectomètre bidirectionnel décrit dans [35]. 43 fig I-13 : Exemple de résultats obtenus avec le réflectomètre bidirectionnel (points). La courbe en trait continu représente le profil théorique correspondant à une valeur de σ égale à 0,9 mrad, d'après [35]. 45 fig I-14 : Représentation des fentes source et collectrice. 45 fig I-15 : Une méthode de mesure des défauts de surface. 47 fig I-16 : Principe de l'aberrographe de Léonov : Les déviations d'un faisceau lumineux provenant d'un collimateur (1), dévié par un prisme (2) et un pentaprisme (3), sont enregistrées sur une plaque photographique (4) que l'on déplace au voisinage du foyer F. Cette méthode est surtout employée sur des paraboloïdes monobloc, d'après [40]. 47 fig I-17 : Représentation des origines des défauts de pointage. Les deux axes de rotation de l'héliostat ainsi que la normale effective à la surface réflectrice N, ne sont pas dans leur position idéale, d'après [42]. 51 fig I-18 : Schéma de principe du système BCS. 51 fig I-19 : Représentation du paraboloïde fictif P(x,y). Il dépend de l'instant to et de la position de l'héliostat sur le terrain, d'après [46]. 55 fig I-20 : Vue de dessus de l'outil de réglage utilisé pour les modules des héliostats de THEMIS. T₁ est une cale fixe, T₂ et T₃ sont des cales mobiles. On peut donc imposer des pentes dans deux directions perpendiculaires du module. 55 fig I-21 : Méthode du théodolite. L'axe Tz est vertical, le point R sert d'origine aux azimuts. Lorsque l'autocollimation est réalisée pour la facette de centre O, l'axe TO est repéré par ses angles en hauteur et azimut ho et ao. 57 fig I-22 : Principe de la méthode de réglage du concentrateur du four de 1000 kW d'Odeillo. 57 fig I-23 : Principe de réglage laser d'un concentrateur fixe à axe vertical. Si la facette de centre O_i est bien réglée, le faisceau revient exactement sur lui-même. 61

fig I-24 : Principe de réglage laser d'un héliostat sphérique. f est la distance focale de l'héliostat. 61

- 494 -

- fig I-25 : Méthode des ellipses de Cabannes et Le Phat Vinh. L'image de Gauss s'obtient par l'intersection du cône de demi-angle au sommet ϵ_0 issu de S, et du plan focal : elle est contenue dans toutes les ellipses (E) issues des points P, d'après [50]. 63
- fig I-26 : Répartition d'éclairement dans le plan focal d'un paraboloide de révolution, en fonction de la distance r=FM', et pour différentes ouvertures maximales du concentrateur. Soleil à luminance uniforme [50]. 63
- fig I-27 : Loi de l'étendue géométrique appliquée à un élément de surface dP du concentrateur, d'après [51]. 65
- fig I-28 : Répartition d'éclairement dans le plan focal d'un paraboloide de révolution, en fonction de la distance r=FM', et pour différentes ouvertures maximales αm. Il a été tenu compte de la loi de luminance solaire $L(\epsilon)$, d'après [51]. 65
- fig I-29 : Calcul de l'éclairement dans le plan focal d'un paraboloïde de révolution dans le cadre de l'hypothèse d'Aparisi.
- fig I-30 : Répartition d'éclairement dans la tache focale d'un concentrateur paraboloidal de 10 mètres de diamètre. La courbe en trait plein est la courbe d'Aparisi, tandis que les ronds et les triangles indiquent les résultats de mesures expérimentales.
- fig I-31 : Calcul de l'éclairement dans un plan récepteur parallèle au plan focal d'un concentrateur paraboloidal, d'après la méthode statistique de Grilikhes [56]. PNo est la direction idéale de la normale à la surface en P, PN est sa direction réelle.
- fig I-32 : Systèmes de coordonnées utilisées pour le calcul du soleil fictif.
- fig I-33 : Le produit de convolution de la loi de luminance solaire avec le cône d'erreur (lié aux distributions d'erreur sur N_0) a pour effet d'élargir le cône des rayons réfléchis. 77
- fig I-34 : Calcul de l'éclairement en M' avec un soleil fictif $L_R(V_R, W_R)$.
- fig I-35 : La vue en trou d'épingle de Lipps.
- fig I-36 : L'approximation de Courrèges : le disque de rayon D_{ϵ_0} se déplace avec le point de calcul M'. L'éclairement en M' est proportionnel à l'aire hachurée. 87
- fig I-37 : Calcul de la réponse impulsionnelle du miroir sphérique dans le cadre de l'approximation de Courrèges. Le parallèlogramme est défini par les points d'impact des rayons en provenance du centre du soleil et qui 8e réfléchissent aux quatre coins du miroir. 87

67

70

73

77

82

67

		- 496 -	
fig	II-1 :	Schéma de principe du système HCS.	94
fig	11-2 :	Image du soleil à travers une surface réflec- trice.	94
fig	II-3 :	Géométrie facette-plan récepteur.	97
fig	II-4 :	Loi de l'étendue géométrique.	99
fig	II-5 :	Paramètres d'entrée/sortie des codes de cal- cul.	99
fig	II-6 :	Le spectre solaire : a) spectre hors atmosphè- re. b) spectre au niveau de la mer. c) courbe du corps noir à 5900°K.	103
fig	II-7 :	Repérage du vecteur soleil $\overline{S_0}$ dans Rinst.	103
fig	II-8 :	La loi de luminance solaire de Kamada.	107
fig	II-9 :	Passage de la loi de Minnaert à l'expression donnée par P.José pour la loi de luminance solaire.	107
fig	11-10	: La loi de luminance solaire de José.	109
fig	11-11	: La centrale solaire expérimentale THEMIS.	109
fig	11-12	: Vue en coupe Nord-Sud de la partie supérieu- re de la tour de THEMIS.	111
fig	II-13	: Le champ d'héliostats de THEMIS.	113
fig	II-14	: Vue avant et arrière d'un héliostat CETHEL III bis. Sur la vue avant on distingue le bloc "mécanismes" et les neuf modules réflec- teurs de l'héliostat. Le maillage des plots de fixation des miroirs élémentaires sur la face avant des modules est indiqué sur le mo- dule inférieur gauche. Sur la face arrière on distingue la structure porteuse de l'hé- liostat ainsi que l'armature métallique d'un module (traits fins).	115
fig	11-15	: Système d'axes OXYZ rapporté à l'héliostat CETHEL bis. O est le centre de la surface réflectrice.	117
fig	II-16	: Coupe des points d'accrochage des miroirs et vue en perspective d'un plot de focalisation.	118
fig	11-17	: Système d'axes OXYZ rapporté à un module ré- flecteur de l'héliostat CETHEL III bis. O est le centre du module.	120
fig	II-18	: Le four solaire de 1000 kW d'Odeillo - prin- cipe.	120
fig	II-19	: Le four solaire de 1000 kW d'Odeillo - vue d'ensemble.	122

fig	11-20	+	Répartitions de densité de flux obtenues dans le plan focal du paraboloïde (mesures d'origi- ne).	122	1.000
fig	II-21	:	Le champ d'héliostats plans vu du concentrateur	128	
fig	11-22	:	Coupe verticale schématique du concentrateur.	128	
fig	II-23	1.4.0	Modélisation de la surface du concentrateur du four solaire de 1000 kW d'Odeillo suivant Alca- yaga [54].	130	
fig	II-24	たいたい	Représentation du repère (SXYZ) lié au parabo- loide et du repère (OiXoiYoiZoi) lié à la facet- te réflectrice de centre Oi. L'axe SFX est con- fondu avec l'axe du paraboloide, tandis que les axes SY et SZ sont respectivement horizontal et vertical. L'axe OiXoi est dirigé suivant la nor- male à la facette réflectrice et l'axe OiYoi rest contenu par construction dans un plan horizontal.	e 130	
fig	11-25	•	Modélisation du concentrateur d'Odeillo.	131	
fig	11-26	-	Les facettes déformées sous contrainte méca- nique du concentrateur du four solaire de 1000 kW d'Odeillo. Schémas de principe.	133	
fig	11-27	•	Orientations des repères Ro et Ro' par rap- port au repère R.	137	
fig	II-28	:	Repères associés à l'héliostat focalisant et au système récepteur.	141	
fig	II-29	:	Repérage du vecteur $\overline{N_0}$, dans le repère Rinst.	144	
fig	11-30	:	Positions relatives des points C et O.	144	
fig	11-31		Recherche de la position réelle du centre de l'héliostat O. C est le centre de rotation mécanique de l'héliostat et O' est le point cible.	146	
fig	11-32		Réglage d'un héliostat en dehors de son axe : le vecteur $\overline{N_{0i}}$ normal au module de centre Oi se déduit des vecteurs $\overline{S_{to}}$ et $\overline{R_{ti}}$ par la loi de Descartes.	146	
fig	11-33	:	Repères associés à l'héliostat plan et au plan récepteur.	155	
fig	II-3 4	:	Repères associés au concentrateur paraboloi- dal et au plan récepteur.	157	
fig	11-35		Introduction d'un défaut de réglage sur une facette réflectrice. Celui-ci peut être carac- térisé par les angles (a_r, h_r) ou (ϵ_r, ϕ_r) .	162	

- 497 -

fig	II-36 :	Découpage de la facette réflectrice en éléments réflecteurs et positions des noeuds du mailla- ge Pi,j. Pour que le centre Oi de la facette corresponde également au centre d'une maille m et n doivent être impairs	162
fig	II-37 :	Projection de l'héliostat sur le plan de visée	102
		01727.	103
fig	II-38 :	Coupes horizontales des cartes de flux formées dans le plan de la cible active par l'héliostat l16 à 12h GMT (A) et 16h GMT (B). Traits mixtes : code MIRVAL, traits pointillés : code Bézian,	
		traits continus : code Henault.	184
fig	III-l :	les termes de l'approximation du premier ordre	192
fig	III-2 :	Systèmes de coordonnées héliostat (Yp,Zp) et de coordonnées apparentes (Vp,Wp) sur le plan de visée	192
fig	III-3 :	Composition des matrices au premier ordre	196
fig	III-4 :	Calcul de $\overline{N_p}$ dans Ro dans le cas de l'hélios- tat focalisant	196
fig	III-5 :	Développement de $\overline{R_i}$ en fonction de $\overline{R_0}$ et OOi/D	200
fig	III-6 :	Calcul de N _{60i} dans Ro dans le cas de l'héliostat plan	200
fig	III-7 :	Calcul de $\overline{N_p}$ dans Roi dans le cas d'une facet- te de concentrateur fixe	209
fig	III-8 :	Courbes iso-luminance apparentes dans le plan de visée. Le plus souvent, C ne sera pas confon- du avec Qi.	214
	Q		
fig	III-9 :	Définition du facteur de concentration intrin- sèque C _I d'une facette réflectrice.	214
fig	III-10:	Images du soleil vues à travers un groupe de fa- cettes planes présentant des défauts de régla- ge. Les zones hachurées correspondent à des	
		zones obscures.	222
fig	III-11:	Image du soleil vue à travers une facette cy- lindrique.	222
fig	III-12:	Evaluation des défauts de réglage d'un module d'héliostat cylindrique.	230
fig	III -13:	Calcul du centre C de l'ellipse image du so- leil à partir des trois points P ₁ , P ₂ et P ₃ .	230

- 498 -

fig	III- 14 :	Répartitions de luminance observables sur un héliostat focalisant parfaitement pointé et par- faitement réglé. Les courbes iso-luminance in- termédiaires correspondent à des valeurs relatives de 0,76, 0,88, 0,95 et 0,99	235
fig	III-15:	: Géométrie et systèmes d'axes pour une facette réflectrice montée sur un concentrateur fixe.	238
fig	III-16:	Repérage d'une facette réflectrice sur la struc- ture d'un concentrateur	238
fig	III-17:	Répartitions de luminance observables sur une facette réflectrice sphérique dans le cadre de l'approximation du premier ordre.	243
fig	IV-1 :	Systèmes d'axes et de coordonnées utilisés pour les formulations en trou d'épingle. OiYvZv est le plan de visée, perpendiculaire au rayon principal réflé- chi par la facette, O'YvZv est un plan parallèle au plan de visée, et O'Y'Z' est le plan récepteur (P'). Au premier ordre, les points H' et H" sont supposés confondus.	255
fig	IV-2 :	Projection des contours du miroir dans le plan de visée OiYvZv.	255
fig	IV-3 :	Vues en trou d'épingle dans un plan normal aux ra- yons réfléchis (A) et dans le plan récepteur (B).	261
fig	IV-4 :	Projection de la loi de luminance solaire dans le plan récepteur (P'). TT' est la trace du plan défini par $\overline{R_0}$ et $\overline{N_0}$ dans le plan récepteur .	L 264
fig	IV-5 :	Vue de face d'une facette réflectrice rectangulai- re.	264
fig	IV-6 :	Allure des domaines (D _n) et (D') et valeurs des réponses impulsionnelles RI _n (V',W') et RI(Y',Z').	266
fig	IV-7 :	La réflexion plane des rayons solaires,d'après [78].	266
fig	IV-8 :	Calcul des éclairements formés par un héliostat plar dans un plan récepteur normal aux rayons réfléchis situé : (1) à faible distance de l'héliostat ; (2) à longue distance; (3) à distance intermédiaire.	1 270
fig	IV-9 :	S(V',W') est la distribution limite de celle qui est représentée ci-dessus lorsque ∈ tend vers O.	275
fig	IV-10 :	Projection du cône d'erreur P _{Rj} (V',W') dans un plan normal aux rayons réfléchis : cas général.	282
fig	IV-11 :	Projection du cône d'erreur P _{Rj} (V',W') dans un plan normal aux rayons réfléchis : cas d'une distribution d'erreur circulaire sur les normales.	282
fig	IV-12 :	Calcul de la perte en concentration au centre de la tache image d'un héliostat focalisant, dans le cas où le domaine (Dh) couvert par l'ensemble des ré- ponses impulsionnelles des facettes réflectrices est petit devant l'image du disque solaire.	288

	fiç	IV-	13	: Courbes montrant l'évolution de T_r en fonction de σ/ϵ_0 , pour différentes valeurs de l'angle d'inci- dence i_0 , dans le cas d'un soleil à luminance uni- forme (A) et d'un soleil de José (B).	290
	fig	IV-:	14	: Calcul du facteur de réflexion apparent au centre de la tache image d'un héliostat plan, dans le cas où le plan récepteur est situé à faible distance de l'héliostat.	292
	fig	IV-	15	: Domaine (Doi) des points Oi dans le cas du champ d'héliostats focalisants de THEMIS.	301
	fig	V-1	:	Méthode de tir sur la lune : principe.	312
	fig	V-2	:	Maillage de la cible active.	а 312
	fig	V-3	:	Evolution des facteurs de concentration maximums de l'héliostat 3.	326
:	fig	V-4	:	Evolution des facteurs de concentration maximums de l'héliostat 10.	326
1	fig	V-5	:	Evolution des facteurs de concentration maximums de l'héliostat 29.	328
1	fig	V-6	:	Evolution des facteurs de concentration maximums de l'héliostat 94.	328
1	Eig	V-7		Ruptures de pentes sur la surface réflectrice d'un miroir élémentaire .	337
1	ig	V-8	:	Méthode d'estimation des défauts de réglage d'un héliostat plan - Principe.	342
Í	ig	V-9	:	Image d'un héliostat à partir d'un point d'observa- tion M'_0 .	342
f	ig	V-10	:	Evaluation de la distance D séparant l'héliostat du point d'observation M'_{O} .	344
f	ig	V-11	:	Etude statistique des lois d'erreur sur a _r et h _r . Droites de Henry .	352
f	ig	V-12	:	Etude statistique des lois d'erreurs sur a _r et h _r . Ajustement analytique.	353
f	ig	V-13	:	Coupe du pyrhéliomètre de Linke et Feussner.	355
£	ig	V-14	:	Evolution du coefficient de réflexion R en fonction de l'angle d'incidence des rayons solaires. La cour- be en trait continu correspond à la relation analy- tique (V-9)	358
f	ig	V-15	:	Bilan en réflexion d'une glace argentée en face ar- rière. On suppose que $r + t = 1$.	358
f	ig	V~16	:	Réduction de la surface d'une facette réflectrice par effet d'ombre/blocage sur sa tranche opaque.	362

- 500 -

fiç	g V−17	1:	Ombre et blocage dus aux plots de fixation des mi- roirs.	362
fig	f V-18	:	Répartitions de luminance observables sur un réseau de facettes réflectrices convexes (1) et concaves (2).	368
fig	V-19	:	Répartition des normales N_p à la surface réflectri- ce d'une facette plane. Seules les projections des normales rentrantes sont représentées dans le plan miroir.	du 370
fig	V -20	:	Méthode de la grille : disposition des éléments.	374
fig	V-21	:	Calcul de la normale \overline{N}_p^{\bullet} à la surface réflectrice.	374
fig	V-22	:	Calcul des coordonnées du point G, dont l'image est visible en $P_{i,j}$ sur la facette réflectrice.	380
fig	V-23	:	Simulation de l'image de la grille observée à traves la facette réflectrice.	rs 380
fig	V-24	:	Calcul du point d'impact I _p du rayon réfléchi en P dans le plan récepteur.	386
fig	V-25	:	Réponse impulsionnelle d'un élément réflecteur.	386
fig	V-26	:	Test d'appartenance de M' au quadrilatère Qi,j et ca particuliers.	as 391
fig	V-27	:	Résolutions spatiale et directionnelle r _s et r _e .	396
fig	V-28	:	Montage pratique du sténopé.	400
fig	V-29	:	Méthode d'observation et d'optimisation des réparti- tions de luminance observables sur une facette ré- flectrice du concentrateur du four de 1000 kW d'Odeillo.	400
fig	V- 30	:	Résolutions spatiale et directionnelle pour le sténc pé.	402
fig	V-31	:	Banc de mesure des performances de facettes réflec- trices.	402

PLANCHES

Planche	II-l Répartitions de luminance observables sur un paraboloide de révolution	180
Planche	II-2 Répartitions de luminance observables sur un paraboloïde de révolution	181
Planche	III-l Répartitions de luminance observables sur l'héliostat plan nº 7.	224

		- 502 -		
Planche	111-2	2 Répartitions de luminance observables sur l'héliostat CETHEL III bis nº 94, lors d'un tir sur la lune. Cliché effec- tué à 23 h 24 dans la nuit du 5/2 au 6/2/1985.	233	
Planche	111-3	Répartitions de luminance théoriques observables sur une facette réflectrice sphérique.	244	
Planche	III-4	l Répartitions de luminance théoriques observables sur une facette réflectrice sphérique.	245	
Planche	IV-1	Répartitions de densité de flux formées par un miroir plan de 50 cm de côté dans un plan récepteur normal aux rayons réfléchis en fonction de la distance.	271	
Planche	V-1	Répartitions de luminance observables sur l'héliostat CETHEL III bis nº 51, lors d'un tir sur la lune. Cliché effectué à 23 h 52 dans la nuit du 27/3 au 28/3/1986.	316	
Planche	V-2	Répartitions de luminance observables sur l'héliostat CETHEL III bis nº 18, lors d'un tir sur la lune. Cliché effectué à 4 h 38 dans la nuit du 27/3 au 28/3/1986.	317	
Planche	V-3	Répartitions de luminance observables sur l'héliostat CETHEL III bis nº 3, lors d'un tir sur la lune. Cliché effectué à 23 h 02 dans la nuit du 27/3 au 28/3/1985.	318	
Planche	V-4	Répartitions de densité de flux formées par l'héliostat 3 dans le plan de la cible active.	332	
Planche	V-5	Répartitions de densité de flux formées par l'héliostat 29 dans le plan de la cible active.	333	
Planche	V-6	Répartitions de densité de flux formées par l'héliostat 51 dans le plan de la cible active.	334	
Planche	V-7	Répartitions de luminance observables sur l'héliostat plan nº 10.	348	
Planche	V-8	Répartitions de luminance observables sur l'héliostat plan nº 18.	349	
Planche	V-9	Image de la grille lumineuse observée à travers une facette réflectrice déformée sous contrainte mécanique. Panneau 36,fa- cette (4,4).	392	
Planche	V-10	Spot-diagram et réponse impulsionnelle effective de la facette (4,4), panneau 36.	393	

Planche	V-11	Répartitions de luminance observables sur un ensemble de facettes réflectrices du concentrateur du four de 1000 kW d'Odeillo, éclairées par l'héliostat 14 (haut), et par l'héliostat 31 (bas).	404
Planche	V-12	Séquence d'optimisation d'une facette dé- formée sous contrainte mécanique. Panneau 119, facette (3,5).	406
Planche	V-13	Séquence d'optimisation d'une facette dé- formée sous contrainte mécanique. Panneau 24, facette (3,4).	410
Planche	V-14	Réponses impulsionnelles effectives de la facette, avant et après optimisation.	411
Planche	V-15	Séquence d'optimisation d'une facette déformée sous contrainte mécanique. Panneau 36, facette (2,5).	412
Planche	V-16	Réponses impulsionnelles effectives de la facette, avant et après optimisation.	413

PHOTOGRAPHIES

Photographie	Ι	Héliostat CETHEL III bis, vue de face.	114
Photographie	II	Vue d'ensemble du four solaire de 1000 kW.	123
Photographie	III	Le concentrateur du four solaire de 1000 kW.	124
Photographie	IV	Le champ d'héliostats vu du concentrateur.	124
Photographie	v	Une rangée d'héliostats équipés de leurs lunettes de guidage.	125
Photographie	VI	Vue arrière d'une facette réflectrice du concentrateur. On distingue la vis centrale de focalisation (V_C) , les vis extérieures de focalisation $(V_{pl} a V_{p8})$, et les 3 points de fixation et de réglage en orientation $(V_{o1} a V_{o3})$.	125
Photographie	VII	Le champ d'héliostats de THEMIS lors d'un ti sur la lune.	.r 237

TABLEAUX

INTRODUCTION

ł

Tableau I	gie solaire	12
Tableau II	: Caractéristiques optiques et géométriques de que ques champs d'héliostats focalisants.	l- 17
Tableau II	II : Caractéristiques optiques et géométriques de que ques fours solaires.	∍1- 18
CHAPITRE I	<u>II</u> «	
Tableau I	: Fiche signalétique de l'héliostat CETHEL III bis]	117
CHAPITRE V	<u>Z</u>	
Tableau I	: Essais de tirs sur la lune	319
Tableau II	: Défauts de réglage d'héliostats focalisants	321
Tableau II	II : Mesures des facteurs de réflexion apparents des héliostats plans	351
Tableau IV	7 : Etude statistique des déréglages des héliostats plans	351
Tableau V	: Corrections sur les facteurs de réflexion apparent théoriques	58 365
Tableau VI	: Valeurs des résolutions spatiale et direction- nelle objet et image	396
Tableau VI	II : Bilan de l'optimisation des facettes réflec- trices du concentrateur du four de 1000 kW d'Odeillo 4	114

TITRE

CONCENTRATION DU RAYONNEMENT SOLAIRE PAR SIMPLE ET DOUBLE REFLEXION : CONTRIBUTION AUX METHODES DE REGLAGE ET DE CONTROLE DES SURFACES REFLECTRICES A FACETTES.

RESUME

Les performances énergétiques des systèmes concentrateurs d'énergie solaire à facettes réflectrices (simple ou double réflexion) sont caractérisées par les répartitions d'éclairement formées sur un système récepteur donné. Mais ces performances restent souvent inférieures à celles qui étaient attendues, du fait de défauts propres aux installations solaires. Parmi ceux-ci, les défauts de réglage et de surface des miroirs sont essentiels : il est donc nécessaire de les évaluer précisément.

L'estimation des défauts de réglage fait appel à une méthode originale de rétrovisée sur le soleil ou la lune, dont le principe est d'observer, à partir d'un point situé dans le volume focal de l'installation en fonctionnement, les distributions de luminance visibles sur les surfaces réflectrices. Dans le cadre d'une approximation du premier ordre, les déréglages des miroirs n'entrainent qu'un décalage de ces distributions, et les erreurs ainsi mesurées sont validées par un code de simulation graphique.

Au premier ordre, la répartition d'éclairement réfléchie par un miroir est le produit de convolution de la loi de luminance solaire avec la réponse impulsionnelle effective du miroir, caractéristique de ses défauts de surface, et dont le mode d'évaluation repose également sur un principe de rétrovisée.

Les expérimentations ont été réalisées sur les sites de Targassonne (centrale solaire THEMIS) et d'Odeillo (four solaire de 1000 kW) et concernent les déréglages des héliostats focalisants de THEMIS et des héliostats plans d'Odeillo, et les réponses impulsionnelles des facettes réflectrices du concentrateur du four de 1000 kW. Leurs résultats sont prometteurs dans la perspective d'une extension ultérieure des capacités des méthodes par rétrovisée, et mettent en évidence l'influence primordiale des défauts de surface des miroirs sur les performances énergétiques des installations.

MOTS CLES

Rayonnement solaire concentré Eclairement Luminance Centrale à tour Four solaire Héliostat Défauts de réglage Réponse impulsionnelle