

François Hénault, Cyril Pannetier

Institut de Planétologie et d'Astrophysique de Grenoble Université Grenoble-Alpes Centre National de la Recherche Scientifique BP 53, 38041 Grenoble – France

Plan of presentation

- Principles of direct and reverse Hartmann tests
- Reverse Hartmann Wavefront Sensor (WFS)
 - Principle Optical layout
 - Theoretical model and relations
 - Wavefront Error (WFE) slopes reconstruction
- Application to the Shack-Hartmann WFS
 - Similarities with reverse Hartmann WFS
 - Fourier optics model
- Numerical simulations
 - Input parameters and studied cases
 - Numerical results
- Conclusion

Direct and reverse Hartmann tests

- A. Direct Hartmann: Set a grid of pinholes at the pupil plane of an aberrated optical system, and observe a distorted grid near (but not at) the image plane → Modern Shack-Hartmann WFS
- **B. Reverse Hartmann**: Set the grid near (but not at) the image plane, and observe its distorted image at the pupil plane

Reverse Hartmann Wavefront Sensor

- Principle Optical layout
- This is a **pupil plane WFS**: a backward gazing camera forms an image of the pupil plane seen through a spatial filter
- The filter is located between the pupil and focal planes, at a distance z' from the camera
- Accurate WFE measurements are feasible when the period of the spatial filter and distance z' are optimized

Reverse Hartmann Wavefront Sensor

Reverse Hartmann Wavefront Sensor

• Two different types of spatial filters are usable

Reverse Hartmann Wavefront Sensor

- Theoretical model
 - Only Fresnel diffraction theory allows complete description of the instrument
 - The model can be simplified by retropropagating complex amplitude from the filter to the pupil planes

Wavefront error slopes reconstruction

- Spatial demodulation using a double Fourier transform algorithm
 - Start with the measured Hartmann-gram
 - Returns complex distributions whose phases are proportional to the slopes along X
 Y-a and Y axes

Application to the Shack-Hartmann WFS

- Empirical statement: Similar analytical relations govern the locations of the image spots for both WFS types:
 - Shack-Hartmann WFS (SH-WFS)

$$x'_{m} = m p - f \partial \Delta(x, y) / \partial x$$
$$y'_{n} = n p - f \partial \Delta(x, y) / \partial y$$

Reverse Hartmann WFS (RH-WFS)

 $x_{m} = mF p'/z' - d'' \partial \Delta(x, y) / \partial x$ $y_{n} = nF p'/z' - d'' \partial \Delta(x, y) / \partial y$

 Strong similarity suggests that RH-WFS image processing is also applicable to the SH-WFS → The SH-IFT method

Shack-Hartmann WFS optical model

- Pure Fourier
 optics model
 - A segmented array of linear phase ramps is added to the input wavefront
 - Recorded intensity on the SH-WFS detector array is computed as a Fraunhofer diffraction pattern
 - This model requires huge computing arrays (≥ 32767 x 32767)

WFE slopes reconstruction – SH-IFT method

- Same reconstruction procedure as for the RH-WFS using a different gain factor
 - Raw intensity distributions recorded on the detector array

V٨

Ρ

Conferer

Numerical simulations (1/5)

• Input parameters and studied cases

			Pupil sampling	$N \times N$					
'FS type	Parameters	Symbol / Formula	33 x 33	65 x 65	Unit				
	General / Tested optical system								
square Ronchi	Reference wavelength	λ	0.6	0.6 1 0.3	μm				
grating	Focal length	F D	1		m				
BH_WES with	Diameter		0.3		m				
	Aperture number	F/D	3.3	3.3	_				
pinnoles grid	Square Ronchi / Reverse Hartmann test								
SH-WFS using	Image to filter distance	$z' = O_I O'$	-0.281	-0.490	m				
SH_IFT method	Filter period	p'	2.64	2.30	mm				
	Relative pupil shear	See slide 6	0.05	0.04	%				
	Gain	See slide 6	1.7E+03	1.4E+03	_				
unil compling	Contrast (monochromatic)	See slide 6	0.999	0.996	_				
iph sampling	Shack-Hartmann with SHIFT met	thod							
- 33 x 33	Microlens array pitch /	p = D/N	9.09	4.62	mm				
65 v 65	Microlens width	P 200							
. 03 x 03	Microlenses focal length	f	1000	1000	mm				
	Relative pupil shear	$\rho = \lambda f/pD$	0.022	0.043	%				
	Gain	$G = 2\pi f/p$	6.9E+02	1.4E+03					
nce 11102 – Applied Optica	I Metrology III	S	San Diego, 08-13-2019						

Numerical simulations (2/5)

 Reverse Hartmann WFS with square Ronchi grating

65 x 65 Measurement error < 10% RMS

Numerical simulations (3/5)

Reverse • Hartmann WFS with pinholes grid

33 x 33

65 x 65

Original Wavefront

Error slopes

along Y

Numerical simulations (4/5)

Original WFE

slopes along Y

 Shack-Hartmann WFS using SH-IFT method
 Original WFE slopes along X
 Measured WFE

< 10% RMS

Conference 11102 - Applied Optical Metrology III

San Diego, 08-13-2019

Numerical simulations (5/5)

- Best slopes measurement accuracy (< 10% RMS) is achieved by the RH-WFS equipped with a square Ronchi grating and by the SH-WFS using SH-IFT method
- Measurement accuracy improves with pupil sampling
- One may conclude that direct and reverse tests are equivalent

	Original WFE slopes	Measured slopes	Slopes difference	Relative error (%)	Original WFE slopes	Measured slopes	Slopes difference	Relative error (%)	
Square Ronchi test	Pupil sampling 33 x 33				Pupil sampling 65 x 65				
X-slopes (mrad)	0.052 0.010	0.070 0.010	0.059 0.003	114 26	0.052 0.010	0.057 0.010	0.017 0.001	³² 9	PTV RMS
Y-slopes (mrad)	0.060 0.012	0.099 0.013	0.064 0.003	107 25	0.060 0.012	0.068 0.012	0.018 0.001	30 8	PTV RMS
SH-IFT method	Pupil sampling 33 x 33				Pupil sampling 65 x 65				
X-slopes (mrad)	0.051 0.010	0.054 0.010	0.009 0.001	17 13	0.051 0.010	0.052 0.010	0.006 0.001	12	PTV RMS
Y-slopes (mrad)	0.060 0.012	0.063 0.012	0.009 0.002	15 14	0.060 0.012	0.059 0.011	0.006 0.001	10 8	PTV RMS

Conclusion

- The historical Hartmann test is well-known and its principle gave birth to moderns Shack-Hartmann WFS
- The inverse Hartmann test is less known, but its principle can also be used in wavefront sensing for metrology, ophthalmology or astronomic applications
- Both types of wavefront sensors can be modeled using pure Fourier optics theory
- Numerical simulations show that they can achieve equivalent measurement accuracy if the reverse Hartmann WFS is equipped with a square Ronchi grating
- It is also found that the intensity distribution recorded by the SH detector array can be processed globally → The SH-IFT method

Thanks for your attention

Questions ?

Conference 11102 - Applied Optical Metrology III

San Diego, 08-13-2019