

Testing light concentrators prototypes for the Cherenkov Telescope Array

François Hénault, Pierre-Olivier Petrucci, Laurent Jocou, Brahim Arezki, Yves Magnard Institut de Planétologie et d'Astrophysique de Grenoble Université Grenoble-Alpes, Centre National de la Recherche Scientifique B.P. 53, 38041 Grenoble – France

Bruno Khélifi, Pascal Manigot Laboratoire Leprince-Ringuet, Ecole Polytechnique, 91128 Palaiseau – France

Jean-François Olive, Pierre Jean Institut de Recherche en Astrophysique et Planétologie, 31028 Toulouse– France

> Michael Punch Université Paris 7 Denis Diderot, 75205 Paris – France

for the CTA Consortium

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV San Dieg

Plan of presentation

- The Cherenkov Telescope Array (CTA)
- Principle of Cherenkov telescopes
- Light Concentrator requirements

₩ØSUG@2020

Oceanvaloire des Sciences de l'Univer

- Prototypes definition
 - Winston cones
 - Nonimaging lens
- Test bench description
 - Design

Grenoble

et d'Astrophysique de Grenoble

- Error analysis
- Measurement procedure
- **Experimental results** lacksquare
- Conclusion

The Cherenkov Telescope Array (CTA)

- More than 100 collecting telescopes in South and North Hemispheres (Chile and Canary Islands)
 - Including ~ 40 Medium-size telescopes (MST) of 12 m diameter

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV

₩€SUG@2020

C

UNIVERSITÉ Grenoble

et d'Astrophysique de Grenoble

San Diego, 08-06-17

Principle of Cherenkov telescopes

- To collect very faint UV pulses at ground level, generated by high-energy cosmic Gamma-rays interacting with atmosphere
- Focal plane equipped with ~1800 photomultipliers (PM)
- Each PM equipped with a light concentrator (LC) having two main functions:
 - To maximize concentration efficiency (fill dead spaces between PMs)
 - To reject stray-light originating from terrestrial environment

Light Concentrator requirements

Most critical requirements: Spectral range and Optical transmission

REQUIREMENTS		VALUES		
	Spectral range	From 300 to 600 nm		
Cut-off angle $\alpha_{\rm C}$		Depending on the optical design $\alpha_{\rm C} = 28.5 \pm 0.5$ deg. for CPC $\alpha_{\rm C} = 26 \pm 0.5$ deg. for nonimaging lens		
MST telescope half-angle α_T (nominal)		$\alpha_{\rm T} = 21.2 \text{ deg.}$		
Optical transmission for all angles $0 \le \alpha \le \alpha_T$ and all polarization states of light		$T \ge 80$ % on the full spectral range (goal 85%)		
Entrance aperture y'		Hexagonal of width 49 mm flat to flat		
Shape error		\leq 0.1 mm		
Photomultiplier Tube (PMT)		Hamamatsu R12992-100 series		

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV

Prototypes definition: Winston cones

- Made of three petals of molded plastic
- Coated with high-reflective layers

₩€SUG@2020

UNIVERSITÉ Grenoble

et d'Astrophysique de Grenoble

> Will be protected from harmful desert environment by a large common Plexiglas window

et d'Astrophysia **Prototypes definition: Nonimaging lenses**

₩€SUG@2020

Observaloire des Sciences de l'Univers

Two different types: • plano-convex and aspheric

Grenoble

- Made of FK5 glass • (good transmission in near-UV range)
- Anti-reflection coated on • both faces
- Also act as protective • windows

Plano-convex lens

Aspheric lens

cta cherenkov telescope array

Test bench design

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV

Observatoire des Sciences de l'Univers

CIPIS

UNIVERSITÉ Grenoble

Alpes

IPAG

titut de Planétologie et d'Astrophysique de Grenoble

San Diego, 08-06-17

Test bench error analysis

 Typical repeatability error of 0.34 % (worst case 1.3 %) for rejection curves and relative transmission measurement

CINC

UNIVERSITÉ Grenoble

Δlnes

et d'Astrophysique de Grenoble ₩€SUG@2020

Observaloire das denoes de l'Univer

 Typical absolute error of 1.6 % (worst case 2.5 %) for spectral transmission curves

Error Source	Туре	RMS Error (%)	Max. Error (%)
Beam non-uniformity	Bias	1.23	1.23
Light source and PM intensity	Drift	0.02	0.02
Light source and PM intensity	Random	0.01	0.06
PM voltage adjustment	Random	0.02	0.05
LC positioing error (XYZ)	Random	0.12	0.34
LC positioing error (roll angle)	Random	0.09	0.16
LC shape deformation	Random	0.28	0.66
Repeatability error (%)	0.34	1.29	
Absolute error (%)		1.57	2.52

Measurement procedure

₩€SUG@2020

Observatoire des Idences de l'Univers

CIPIS

UNIVERSITÉ Grenoble

Alpes

IPAG

titut de Planétologie et d'Astrophysique de Grenoble

Experimental results: Winston cones

• Two different series: standard or enhanced reflective coatings

Clant

UNIVERSITÉ Grenoble

titut de Planétologie et d'Astrophysique de Grenoble

 Results are well above specification: from 85 to 90 % for enhanced coating series

₩ØSUG@2020

Observatoire des Sciences de l'Univers

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV

Nonimaging lenses vs. cones

• Raw rejection curves show different aspects

₩ØSUG@2020

Observatoire des Sciences de l'Univers

Class

UNIVERSITÉ Grenoble

Alnes

IPAG

et d'Astrophysique de Grenoble

Nonimaging lenses vs. cones

- Final comparison between nonimaging lenses, Winston cones, and cones + Plexiglas window
 - Lenses are more efficient than cones alone (+5-11 %) and cones + window (+11-19 %) depending on wavelength

Conclusion

- Two different types of light concentrators have been designed for the Cherenkov Telescope Array (CTA)
 - Classical Winston cone
 - Nonimaging lens (Following Edge-ray Principle)
- Both types of concentrators have been prototyped, a test bench was developed in our laboratory
- Extensive test campaign led to the following conclusions:
 - Pure performance is in favor of nonimaging lenses. But they present some drawbacks:
 - Stray reflections above cut-off angle
 - Heavier mass
 - Higher cost
- Thus Winston cones were selected as baseline for CTA