

Outline

1)General Introduction / Context 2)Backward-Gazing Method **3)Numerical Simulations** 4) Experiments and Preliminary Results 5)Conclusion and Outlooks

Different types of CSP Plants

Tower power Plant (Gemasolar, Spain)

Parabolic Trough (Shams 1, Abu Dhabi)

(NOVATEC BIOSOL)

Dish Stirling (Eurodish, Odeillo)

Why must we characterize the concentrators

Immediate applications

- Decrease the necessary time to adjust thousands of reflective facets
- Identify damaged facets, to be repaired or replaced

More prospective applications

- To evaluate and optimize prototypes
- To predict performance
- To analyze mechanical stress, and the influence of the wind and gravity
- A better control of the heliostat tracking is necessary for the development of pointing strategies

Different types of errors

Method's Description

Images of the reflection of the sun on the heliostat are taken from different points of view. By knowing the sun profile, it is possible to reconstruct the optical errors of the mirrors.

Slope Errors Equations

Wavefront to surface slopes transform matrix

Proceedings

Numerical Simulations

Heliostat and sun models

b) Super-Gaussian sun profile with parameter $\xi = 4$

Numerical Simulations

i i

WFE and slopes Reconstruction Errors

			Refer	ence values	Measurement errors
		X slopes (mrad)	5.351		0.039
	PTV	Y slopes (mrad)	5.442		0.042
		WFE (mm)		11.164	0.060
		Required :		1.794	0.007
	RMS	 Wavefront error < 2 Measurement < 0.2 		1.953	0.009
			mrad	3.775	0.009

Numerical Simulations

1

Surface Reconstruction Errors

T			Refe	rence values	Measurement errors
		X slopes (mrad)		4.243	0.183
	PTV	Y slopes (mrad)		3.993	0.185
		Surface (mm)		7.445	0.468
		Required :		1.340	0.046
	RMS - Shape error < 1	- Shape error < 1 mra		1.141	0.053
		- Measurement < 0.1	mrad	1.027	0.079

Experiments at THEMIS power plant

Targasonne – France (Pyrenees Mountains)

A 5th camera is used to calibrating the sun profile during images acquisition

Experiments

Acquisitions and Treatments

Conclusion and Outlooks

- A four cameras backward-gazing method to characterize solar concentrators has been described
- Numerical simulations have been performed to validate the method, and to demonstrate that its accuracy is compliant with the requirement for concentrating surfaces in solar power plants
- An experiment has been set-up in THEMIS solar power plant. The method already works in WFE sensing mode, but:
 - Image processing has highlighted the difficulty to superimpose the images ("registration")
- The validation of the method in surface shape sensing mode is in progress

Possible extension to freeform optics metrology

Other slides

Wavefront and shape errors

Relation with wavefront

Relation with wavefront

Relation with wavefront

