

Quantum physics and the beam splitter mystery

François Hénault Institut de Planétologie et d'Astrophysique de Grenoble Université Joseph Fourier Centre National de la Recherche Scientifique BP 53, 38041 Grenoble – France

Conf. 9570 - The Nature of Light: What are Photons? VI

San Diego, 08-11-15

Plan of presentation

- Part 1 Beamsplitter theoretical models
 - Quantum physics
 - Classical wave optics
- Part 2 Beamsplitter experimental setups

 Hanbury Brown and Twiss experiment
 Mach-Zehnder interferometer

Quantum view of the beamsplitter

- Macroscopic, "black-box" matrix model
- Energy conservation

 $A_1'A_1'^* + A_2'A_2'^* = 1$

- Unitary operator (TBC)

$$A_1'A_2'^* + A_2'A_1'^* = 0$$

Beamsplitter matrix:

$$M_{\rm BS} = \frac{1}{\sqrt{2}} \begin{bmatrix} i & 1\\ 1 & i \end{bmatrix}$$

$$A_{T2} A_{RI} = A_{2}^{\prime}$$
Exit port 2'
$$A_{I} \longrightarrow A_{T1}$$
Entrance port 1
$$A_{2} \bigoplus Entrance$$
Entrance port 2
$$A_{2} \bigoplus Entrance$$
Entrance port 2

Real world beamsplitters

• Here are essentially studied "symmetric" beamsplitters

Wave optics model of the beamsplitter

Multi-interference effect Internal phase φ may lacksquare r_{12} as in Fabry-Perot depend on λ , θ ... interferometers A_{R1} $A_{T1} = \frac{t_{12}t_{21}\exp(i\varphi)}{1 - r_{21}^2\exp(2i\varphi)}$ $A_{R1} = \frac{r_{12} + r_{21}(t_{12}t_{21} - r_{12}r_{21})\exp(2i\varphi)}{1 - r_{21}^{2}\exp(2i\varphi)}$ r_{21} Lossless beamsplitter: • $A_{R1} = -r_{21} \frac{1 - \exp(2i\varphi)}{1 - r_{21}^2 \exp(2i\varphi)}$ A_{T1} **Energy conservation** $|A_{T1}|^2 + |A_{R1}|^2 = 1$ $\varphi = k ne \cos \theta = \frac{2\pi}{2} ne \cos \theta$ Achromatic phase-shift λ $\phi_{R1} - \phi_{T1} = Arg[A_{R1}A_{T1}^*] = Arg[i\sin\varphi] = \pm \frac{\pi}{2}$ Conf. 9570 - The Nature of Light: What are Photons? VI San Diego, 08-11-15

BS transmitted amplitudes and phase-shift

Lossless beamsplitter \rightarrow Achromatic phase-shift of $\pm \pi/2$

BS correlation experiments

- Inspired from Hanbury Brown and Twiss experiment on intensity interferometry (1956)
- Used in coincidence counting mode by Grangier, Roger and Aspect (GRA) → Anti-correlation at low light levels (1986)
- Demonstrates the particle nature of light (indivisible photon)

GRA experiment – Classical model

Uses classical notions of coherence length, generated currents...
 Transmitted amplitude Reflected amplitude

Transmitted amplitude $\pi/2$ $A_{T1}(t,k) = \frac{1}{\sqrt{2}} \exp(-ikct)$ phase shifted $A_{R1}(t,k) = \frac{i}{\sqrt{2}} \exp(-ikct)$

• First integration on spectral domain $[k - \delta k/2, k + \delta k/2]$

$$C_{RT}^{\delta k}(t) = \frac{1}{2\delta k} \int_{k-\delta k/2}^{k+\delta k/2} A_{T1}(t,k') A_{R1}(t,k') dk' = \frac{i}{2} \exp(-2ikct) \sin c(\delta kct)$$

• Second integration on time domain $[-\tau, +\tau]$

$$C_{RT} = \frac{1}{2\tau} \int_{-\tau}^{+\tau} \left[\operatorname{Re} al\left(C_{RT}^{\delta k}(t)\right) \right]^2 dt = \frac{1}{2\tau} \int_{-\tau}^{+\tau} \sin^2\left(2kct\right) \sin c^2\left(\delta k ct\right) dt$$

Conf. 9570 - The Nature of Light: What are Photons? VI

GRA experiment – Classical model

- Final expression $C_{RT} = (1 \sin c (2kc\tau))/4$
- Not in excellent agreement due to drastic approximations
- But accounts for experimental photon anti-correlation

The Mach-Zehnder interferometer

• Originally used as metrology tool in optics, gas dynamics etc.

et d'Astrophysique de Grenoble

MZ interferometer – OPD modulation δ

- Achromatic phase-shift $\Delta \phi = \pm \pi/2$ when $\delta = 0$
- Equal to 0 $[\pi]$ otherwise

MZ interferometer – Wave optics model

At zero optical path difference

With OPD modulation

Conclusion

- Quantum and wave optics BS theories are in global agreement. They both describe a $\pm \pi/2$ phase shift between transmitted/reflected electric fields
 - Quantum physics is a macroscopic "black-box" model
 - Classical optics evidences a multi-interference effect
- 4th-order interference (HBT) experiments show anticorrelation of BS outputs (GRA)
 - Quantum physics Interpretation \rightarrow confirms photon existence
 - Can also be explained with classical wave optics model including the $\pm \pi/2$ phase shift
- Future work on other interference experiments
 - Mach-Zehnder, Hong-Ou-Mandel...