Can violations of Bell’s inequalities be considered as the final proof of quantum physics?

François Hénault
Institut de Planétologie et d’Astrophysique de Grenoble
Université Joseph Fourier
Centre National de la Recherche Scientifique
BP 53, 38041 Grenoble – France
Plan of the presentation

• **Part 1** Semi-classical, heuristic interpretation of modern J. Bell’s experiments

• **Part 2** A quick look behind – Revisiting the Science story
Can violations of Bell’s inequalities be considered as the final proof of quantum physics?

Sketch of modern Bell’s experiments

- Measure correlations between the four detectors when varying PBS angles α and β
Semi-classical interpretation

- Assume a “hidden rule” stating that photon polarization states are opposite at their creation. Orientations of linearly polarized photons n°1 and 2 are \([\lambda, -\lambda] \)
- Complies with the conservation law of cinematic momentum
Can violations of Bell’s inequalities be considered as the final proof of quantum physics?

Equivalence with Quantum Physics

- **Joint detection probabilities between couples of detectors:**

 \[
 \begin{align*}
 [D1^+, D2^+] \rightarrow P_{++} &= \frac{\int_{0}^{2\pi} \cos(\alpha - \lambda) \cos(\beta - \lambda) \, d\lambda}{2\pi} = \frac{\cos^2(\alpha - \beta)}{4} \\
 [D1^-, D2^-] \rightarrow P_{--} &= \frac{\int_{0}^{2\pi} \sin(\alpha - \lambda) \sin(\beta - \lambda) \, d\lambda}{2\pi} = \frac{\cos^2(\alpha - \beta)}{4} \\
 [D1^+, D2^-] \rightarrow P_{+-} &= \frac{\int_{0}^{2\pi} \cos(\alpha - \lambda) \sin(\beta - \lambda) \, d\lambda}{2\pi} = \frac{\sin^2(\alpha - \beta)}{4} \\
 [D1^-, D2^+] \rightarrow P_{-+} &= \frac{\int_{0}^{2\pi} \sin(\alpha - \lambda) \cos(\beta - \lambda) \, d\lambda}{2\pi} = \frac{\sin^2(\alpha - \beta)}{4}
 \end{align*}
 \]

- **Correlation coefficient:**

 \[
 E(\alpha, \beta) = \frac{P_{++} + P_{--} - P_{+-} - P_{-+}}{P_{++} + P_{--} + P_{+-} + P_{-+}} = \cos 2(\alpha - \beta)
 \]

- **Complies with Quantum Physics – Allows violation of Bell's inequalities**
Can violations of Bell’s inequalities be considered as the final proof of quantum physics?

Are Bell’s inequalities applicable here?

- Bell’s inequalities writes:
 \[-2 \leq S(\alpha, \beta, \alpha', \beta') = E(\alpha, \beta) - E(\alpha, \beta') + E(\alpha', \beta) + E(\alpha', \beta') \leq +2\]

- No reason that \(\lambda\) stays common for each couple \((\alpha, \beta)\) and \((\alpha', \beta')\) because measurements are not simultaneous.
The EPR paradox (1/2)

- **Definitions:**
 - **Physical reality:** A parameter measurable from an experimental apparatus without disturbing it, and predictable by a physical theory
 - **Completeness:** A theory taking into account all elements of physical reality

- Quantum Mechanics are based on Heisenberg’s Uncertainty Principle. Do they give a complete view of physical reality?
 1) **If No,** a more complete theory may exist
 2) **If Yes,** we must accept the Uncertainty Principle and sacrifice our usual understanding of objective physical reality

- To decide between hypotheses n°1 and 2, EPR described a *Gedanken* experiment
The EPR paradox (2/2)

- The EPR *Gedanken* experiment is based on intricated particles — Not necessarily photons
- It shows that some elements of physical reality (here the position and momentum of particles) can be determined simultaneously
- This contradicts hypothesis n°2, hence only hypothesis n°1 is valid and Quantum Mechanics are not complete
- It finally seems that **the main purpose of EPR was to defeat the Uncertainty Principle**
- Additional remarks:
 - The paper strictly follows the formalism of Quantum Mechanics
 - No "modern" considerations about causality, non-locality, propagation of information faster than the speed of light, or hidden variables
Answer from N. Bohr

- EPR paradox was not the first attack against the Uncertainty Principle
- In his answer, N. Bohr essentially discusses two previous Einstein’s ‘s *Gedanken* experiments involving photons only
- He also suggests that intricated particles should be considered as a single global system instead of two independent systems (→ Non locality ?)

San Diego, 08-28-13
D. Bohm's interpretation

- New interpretation of the EPR paradox, based on contemporary quantum formalism
- Measurements performed on spinned atoms should be equivalent to those of position and momentum of particles
- No instantaneous “hidden interaction” between atoms can exist – This would violate the laws of special relativity
- Spinned atoms experiment could be simplified by measuring correlations between polarizations of intricated photons
- **NOTA**: In earlier papers (1952), Bohm firstly mentioned the possibility of “hidden variables”. But he abandoned this idea in his 1957 paper
Bell's inequalities

- Following Bohm’s ideas, Bell evoked experiments based on spinned particles – not photons – and Stern-Gerlach magnets detectors
- There exists a huge quantity of Bell's inequalities. Here we used the Clauser, Horne, Shimony and Holt (CHSH) form:

\[-2 \leq S(\alpha, \beta, \alpha', \beta') = E(\alpha, \beta) - E(\alpha, \beta') + E(\alpha', \beta) + E(\alpha', \beta') \leq +2\]

- CHSH finally defined modern setups for testing Bell’s inequalities from photon polarization states, and four different polarizer angles
- Later, the violation of Bell’s inequalities was experimentally demonstrated by Aspect et al, Weihs et al, and followers
- This is currently considered as the ultimate proof of Quantum Physics completeness, but…
Conclusion

• We proposed a semi-classical model explaining the violation of Bell’s inequalities in modern experiments based on photons polarization.

• But these experiments do not seem to respect the original spirit of EPR paper, that consists in measuring position and momentum of any type of particle.

• The EPR paradox should be considered as the 3rd and last attack from Einstein against Heisenberg’s Uncertainty Principle.

• A final proof of the completeness of quantum physics theory remains to be demonstrated.