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General principle

φ = 0, 2π/3 and –2π/3

Ref. sub-pupil:
- Radius r

- Phase-shift φ

X

Y

R

• Three different telescope PSFs are acquired and linearly
combined with complex coefficients {1, exp[2iπ/3], exp[-2iπ/3]}

• The result is inverse Fourier transformed ���� Smoothed replica 
of the original entrance wavefront including phase

• There must be a reference sub-
pupil (or segment) on the optical
surface of the telescope

• Its dimensions are ≤≤≤≤ other 
segments. It is not necessarily 
centred

• Three (or four) phase-shifts are 
successively introduced into the 
reference sub-pupil:
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Extending measurement range beyond [-λ/2,λ/2]

• Goal: Given a piston error δp, remove the 2π ambiguity of this WFS

• Use of a “synthetic wavelength” method based on three neighboring 

wavelengths λ1, λ2 and λ3

• Linear system to be solved

• Synthetic wavelength λS Self-sanity check

(ϕ1, ϕ2, ϕ3 measured
fractional phases)

δp = (n1 + ϕ1) λ1

δp = (n2 + ϕ2) λ2

δp = (n3 + ϕ3) λ3

321S λ
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Algorithm
δp0 = λS (ϕ1 - 2ϕ2 + ϕ3)

n1 = NINT(δp0/λ1 - ϕ1)
n2 = NINT(δp0/λ2 - ϕ2)
n3 = NINT(δp0/λ3 - ϕ3)

δp1 = λ1 (n1 + ϕ1)

δp2 = λ2 (n2 + ϕ2)
δp3 = λ3 (n3 + ϕ3)

δp = (δp1 + δp2 + δp3) / 3
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WFS optical scheme
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Y

Telescope

Focal 
plane

Primary
mirror

X CCD
camera

Z

Modified
IFS

Diffraction 
grating

Pupil
slicer

WFS optical scheme (spectral stage)

Secondary
mirror



San Diego, 08-21-11Conf. 8149 Astronomical Adaptive Optics Systems and Applications V

Image plane phase-shifting WFS

for giant telescope active and adaptive optics

7

Pupil
transmission

map

Single PSF acquisition Difference between 
two phase-shifted PSFs

Single MTF acquisition Difference between two
phase-shifted MTFs

Reconstructed
pupil map

Piston errors reconstruction (1/2)
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Piston errors reconstruction (2/2)
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• For a 30-m telescope diameter, V = 4, 8 and 11
respectively in medium, good and excellent 
seeing conditions
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Piston measurement error vs. spectral bandwidth

δλδλδλδλ/λλλλ = 3 % δλδλδλδλ/λλλλ = 5 %
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Noise analysis (1/3)
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Noise analysis (2/3)
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Noise analysis (3/3)

Measurement accuracy and Success ratio
vs. Magnitude of guide star and Read-out noise
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Conclusion

• Image plane wavefront sensors can be operated in a phase-
shifting mode, introducing different phase-shifts into a 
reference sub-pupil

• They can perform multi-spectral measurements in order to 
remove the 2π ambiguity and extend their capture range to 
[-10,+10 µm] and beyond

• They perform better in space, but may attain magnitude 11 
in AO regime, with residual errors around 20 nm RMS

• They are suitable for cophasing large segmented mirrors, 
but also sparse aperture interferometers

• They can be envisaged as low-order AO wavefront sensors, 
or as a special form of “phase diversity” methods


